BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6339501)

  • 1. Dipeptide formation with misacylated tRNAPhes.
    Heckler TG; Zama Y; Naka T; Hecht SM
    J Biol Chem; 1983 Apr; 258(7):4492-5. PubMed ID: 6339501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T4 RNA ligase mediated preparation of novel "chemically misacylated" tRNAPheS.
    Heckler TG; Chang LH; Zama Y; Naka T; Chorghade MS; Hecht SM
    Biochemistry; 1984 Mar; 23(7):1468-73. PubMed ID: 6372858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal binding and dipeptide formation by misacylated tRNA(Phe),S.
    Heckler TG; Roesser JR; Xu C; Chang PI; Hecht SM
    Biochemistry; 1988 Sep; 27(19):7254-62. PubMed ID: 3061451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of anticooperative binding of phenylalanyl-tRNAPhe and tRNAPhe to phenylalanyl-tRNA synthetase of Escherichia coli K10.
    Holler E
    Biochemistry; 1980 Apr; 19(7):1397-402. PubMed ID: 6992864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tRNAPhe deprived of 3'-terminal adenosyl residue does not stimulate adenosine aminoacylation catalyzed by phenylalanyl-tRNA synthetase from Escherichia coli.
    Boutorin AS; Gordienko VA; Lavrik OI; Moor NA
    FEBS Lett; 1988 Sep; 238(1):211-3. PubMed ID: 3049157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylalanyl-tRNA synthetase from E. coli MRE-600: localization of the phenylalanine binding sites on the subunits by affinity reagents.
    Lavrik OI; Moor NA; Khodyreva SN
    Mol Biol Rep; 1982 Mar; 8(2):123-6. PubMed ID: 7043240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the overproduction of phenylalanyl- and threonyl-tRNA synthetases on tRNAPhe and tRNAThr concentrations in E. coli cells.
    Fayat G; Fromant M; Kalogerakos T; Blanquet S
    Biochimie; 1983 Mar; 65(3):221-5. PubMed ID: 6405814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Different properties of native and photochemically cross-linked tRNAPhe can be explained in the light of tRNA conformer equilibria.
    Holler E; Baltzinger M; Favre A
    Biochemistry; 1981 Mar; 20(5):1139-47. PubMed ID: 7013785
    [No Abstract]   [Full Text] [Related]  

  • 11. Amino acid substitutions in protein biosynthesis. Poly(A)-directed polyphenylalanine synthesis.
    Pezzuto JM; Hecht SM
    J Biol Chem; 1980 Feb; 255(3):865-9. PubMed ID: 6985907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Chemical modification of phenylalanyl-tRNA synthetase and ribosomes of Escherichia coli with derivatives of tRNA-Phe carrying photoreactive groups on guanosine residues].
    Vlasov VV; Lavrik OI; Mamaev SV; Khodyreva SN; Chizhikov VE
    Mol Biol (Mosk); 1980; 14(3):531-8. PubMed ID: 6995828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation.
    Belchev B; Yaneva M
    Mol Biol (Mosk); 1976; 10(4):663-7. PubMed ID: 15212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron scattering study of the binding of tRNAPhe to Escherichia coli phenylalanyl-tRNA synthetase.
    Dessen P; Ducruix A; Hountondji C; May RP; Blanquet S
    Biochemistry; 1983 Jan; 22(2):281-4. PubMed ID: 6337625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properies of tRNAPhe from yeast carrying a spin label on the 3'-terminal. Interaction with yeast phenylalanyl-tRNA Synthetase and elongation factor Tu from Escherichia coli.
    Sprinzl M; Siboska GE; Pedersen JA
    Nucleic Acids Res; 1978 Mar; 5(3):861-77. PubMed ID: 205839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced hydrolytic activity of yeast phenylalanyl-tRNA synthetase by tRNAPhe-CC.
    Kuhn W; Schneider FW
    Nucleic Acids Res; 1982 Apr; 10(7):2439-51. PubMed ID: 7045811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Alkylation of tRNA-Phe free and bound to phenylalanyl-tRNA synthetase with 4-(N-2-chloroethyl-N-methylamino)benzylamine].
    Vlasov VV; Grishaev MP; Mamaev SM; Chizhikov VE; Khodyreva SN
    Mol Biol (Mosk); 1981; 15(1):45-53. PubMed ID: 7038443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Conformational change and tRNAPhe phenylalanylation are concerted.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2467-76. PubMed ID: 7046787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-operative effects in affinity labeling reveal the interaction of tRNA-recognition centers of phenylalanyl-tRNA synthetase.
    Gorshkova II; Lavrik OI
    Biochim Biophys Acta; 1983 Aug; 746(3):202-8. PubMed ID: 6349694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational activation of the yeast phenylalanyl-tRNA synthetase catalytic site induced by tRNAPhe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNAPhe lacking these residues.
    Renaud M; Bacha H; Remy P; Ebel JP
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1606-8. PubMed ID: 7015339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.