These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6339944)

  • 21. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion.
    O'Donoghue P; Prat L; Heinemann IU; Ling J; Odoi K; Liu WR; Söll D
    FEBS Lett; 2012 Nov; 586(21):3931-7. PubMed ID: 23036644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic alteration of structure and function in glycine transfer RNA of Escherichia coli: Mechanism of suppression of the tryptophan synthetase A78 mutation.
    Carbon J; Fleck EW
    J Mol Biol; 1974 May; 85(3):371-91. PubMed ID: 22003572
    [No Abstract]   [Full Text] [Related]  

  • 23. An effect of codon context on the mistranslation of UGU codons in vitro.
    Carrier MJ; Buckingham RH
    J Mol Biol; 1984 May; 175(1):29-38. PubMed ID: 6374156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.
    Gong M; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli.
    Yelverton E; Lindsley D; Yamauchi P; Gallant JA
    Mol Microbiol; 1994 Jan; 11(2):303-13. PubMed ID: 8170392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA.
    Adamski FM; Donly BC; Tate WP
    Nucleic Acids Res; 1993 Nov; 21(22):5074-8. PubMed ID: 7504811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosome mutants with altered accuracy translate with reduced processivity.
    Dong H; Kurland CG
    J Mol Biol; 1995 May; 248(3):551-61. PubMed ID: 7752224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomics and the evolution of aminoacyl-tRNA synthesis.
    Ruan B; Ahel I; Ambrogelly A; Becker HD; Bunjun S; Feng L; Tumbula-Hansen D; Ibba M; Korencic D; Kobayashi H; Jacquin-Becker C; Mejlhede N; Min B; Raczniak G; Rinehart J; Stathopoulos C; Li T; Söll D
    Acta Biochim Pol; 2001; 48(2):313-21. PubMed ID: 11732603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frameshifting at the internal stop codon within the mRNA for bacterial release factor-2 on eukaryotic ribosomes.
    Donly C; Williams J; Richardson C; Tate W
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):283-7. PubMed ID: 2207158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptidyl-tRNAs promote translational frameshifting.
    Vimaladithan A; Pande S; Zhao H; Farabaugh PJ
    Nucleic Acids Symp Ser; 1995; (33):190-3. PubMed ID: 8643366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV.
    Hatfield D; Feng YX; Lee BJ; Rein A; Levin JG; Oroszlan S
    Virology; 1989 Dec; 173(2):736-42. PubMed ID: 2556852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of two nonnatural amino acids into proteins through extension of the genetic code.
    Hohsaka T; Ashizuka Y; Sisido M
    Nucleic Acids Symp Ser; 1999; (42):79-80. PubMed ID: 10780388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial Division of Codon Boxes for Expansion of the Amino Acid Repertoire of Ribosomal Polypeptide Synthesis.
    Iwane Y; Katoh T; Goto Y; Suga H
    Methods Mol Biol; 2018; 1728():17-47. PubMed ID: 29404989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the role of the P-site in leftward ribosome frameshifting at a hungry codon.
    Kolor K; Lindsley D; Gallant JA
    J Mol Biol; 1993 Mar; 230(1):1-5. PubMed ID: 8450528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code.
    Dunkle JA; Dunham CM
    Biochimie; 2015 Jul; 114():90-6. PubMed ID: 25708857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of tRNA-mediated +1 ribosomal frameshifting.
    Hong S; Sunita S; Maehigashi T; Hoffer ED; Dunkle JA; Dunham CM
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11226-11231. PubMed ID: 30262649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rate of peptidyl-tRNA dissociation from the ribosome during minigene expression depends on the nature of the last decoding interaction.
    Cruz-Vera LR; Hernandez-Ramon E; Perez-Zamorano B; Guarneros G
    J Biol Chem; 2003 Jul; 278(28):26065-70. PubMed ID: 12716898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular model of ribosome frameshifting.
    Weiss RB
    Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5797-801. PubMed ID: 6592589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tmRNA-induced release of messenger RNA from stalled ribosomes.
    Ivanova N; Pavlov MY; Ehrenberg M
    J Mol Biol; 2005 Jul; 350(5):897-905. PubMed ID: 15967466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [tRNA-binding centers of Escherichia coli ribosomes and their structural organization].
    Karpova GG
    Mol Biol (Mosk); 1984; 18(5):1194-207. PubMed ID: 6209546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.