BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6340442)

  • 41. Chemotactic deactivation of human neutrophils: relationship to loss of cytotaxin receptor function and temporal nature of the phenomenon.
    Nelson RD; Fiegel VD; Herron MJ; Simmons RL
    J Reticuloendothel Soc; 1980 Sep; 28(3):285-94. PubMed ID: 7411541
    [No Abstract]   [Full Text] [Related]  

  • 42. Ligand density elicits a phenotypic switch in human neutrophils.
    Henry SJ; Crocker JC; Hammer DA
    Integr Biol (Camb); 2014 Mar; 6(3):348-56. PubMed ID: 24480897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of neutrophil chemotactic response in diabetic patients with mild and severe periodontal disease.
    Manouchehr-Pour M; Spagnuolo PJ; Rodman HM; Bissada NF
    J Periodontol; 1981 Aug; 52(8):410-5. PubMed ID: 7021793
    [No Abstract]   [Full Text] [Related]  

  • 44. Clostridial collagenase. A chemoattractant for human neutrophils.
    Walter RJ
    Inflammation; 1986 Dec; 10(4):347-61. PubMed ID: 3025090
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Receptor-directed inhibition of chemotactic factor-induced neutrophil hyperactivity by pyrazolon derivatives. Definition of a chemotactic peptide antagonist.
    Dahinden C; Fehr J
    J Clin Invest; 1980 Nov; 66(5):884-91. PubMed ID: 7430350
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymorphonuclear leukocyte function in psoriasis: chemotaxis, chemokinesis, beta-adrenergic receptors, and proteolytic enzymes of polymorphonuclear leukocytes in the peripheral blood from psoriatic patients.
    Fräki JE; Jakoi L; Davies AO; Lefkowitz RJ; Snyderman R; Lazarus GS
    J Invest Dermatol; 1983 Sep; 81(3):254-7. PubMed ID: 6309987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Motility and adhesiveness in human neutrophils. Redistribution of chemotactic factor-induced adhesion sites.
    Smith CW; Hollers JC
    J Clin Invest; 1980 Apr; 65(4):804-12. PubMed ID: 7358846
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Leukocyte migration in different systems. Effect of colchicin. Kinetics of migration under agarose.
    Schreiner A; Kalager T; Vaula D
    Acta Pathol Microbiol Scand C; 1980 Apr; 88(2):89-96. PubMed ID: 6992512
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The alterative effect of isobutylmethylxanthine in hypofunctional human neutrophil chemotaxis.
    Debski BF; Ranney RR; Carchman RA
    Biochem Biophys Res Commun; 1982 Oct; 108(3):1228-34. PubMed ID: 6185116
    [No Abstract]   [Full Text] [Related]  

  • 50. Enhancement of chemotactic migration by the local anesthetic tetracaine.
    Kownatzki E; Uhrich S
    Immunobiology; 1983 Jul; 165(1):97-106. PubMed ID: 6885104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of vitamin K on human neutrophil function.
    Gallin JI; Seligmann BE; Cramer EB; Schiffmann E; Fletcher MP
    J Immunol; 1982 Mar; 128(3):1399-408. PubMed ID: 6276468
    [No Abstract]   [Full Text] [Related]  

  • 52. Distinct chemokinetic and chemotactic responses in neutrophil granulocytes.
    Keller HU; Wissler JH; Hess MW; Cottier H
    Eur J Immunol; 1978 Jan; 8(1):1-7. PubMed ID: 639837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-prostaglandin 1(1) (U-60,257), an inhibitor of leukotriene synthesis, on human neutrophil function.
    Smith RJ; Sun FF; Bowman BJ; Iden SS; Smith HW; McGuire JC
    Biochem Biophys Res Commun; 1982 Dec; 109(3):943-9. PubMed ID: 6297495
    [No Abstract]   [Full Text] [Related]  

  • 54. Neutrophil dysfunction in sepsis. II. Evidence for the role of complement activation products in cellular deactivation.
    Solomkin JS; Jenkins MK; Nelson RD; Chenoweth D; Simmons RL
    Surgery; 1981 Aug; 90(2):319-27. PubMed ID: 7256544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of neutrophil chemotaxis and chemokinesis associated with a plasma protein in aging rats: selective depression of cell responses mediated by complement-derived chemoattractants.
    Mello SB; Farsky SH; Sannomiya P; Garcia-Leme J
    J Leukoc Biol; 1992 Jan; 51(1):46-52. PubMed ID: 1311013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The roles of degranulation and superoxide anion generation in neutrophil aggregation.
    Kaplan HB; Edelson HS; Friedman R; Weissmann G
    Biochim Biophys Acta; 1982 Sep; 721(1):55-63. PubMed ID: 6289915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective effects of the PKC inhibitors Ro 31-8220 and CGP 41,251 on PMN locomotion, cell polarity, and pinocytosis.
    Keller HU; Niggli V
    J Cell Physiol; 1994 Dec; 161(3):526-36. PubMed ID: 7962133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of neutrophil motility and adhesion by intracellular calcium transients.
    Hendey B; Maxfield FR
    Blood Cells; 1993; 19(1):143-61; discussion 161-4. PubMed ID: 7691266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils.
    Schneider C; Zanetti M; Romeo D
    FEBS Lett; 1981 May; 127(1):4-8. PubMed ID: 7250373
    [No Abstract]   [Full Text] [Related]  

  • 60. D-glucose but not insulin reduces N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe)-induced shape changes in suspended human neutrophils.
    Oldenborg PA; Sehlin J
    Biosci Rep; 1997 Oct; 17(5):475-86. PubMed ID: 9419389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.