These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6340980)

  • 41. Individual Xenopus histone genes are replication-independent in oocytes and replication-dependent in Xenopus or mouse somatic cells.
    Old RW; Sheikh SA; Chambers A; Newton CA; Mohammed A; Aldridge TC
    Nucleic Acids Res; 1985 Oct; 13(20):7341-58. PubMed ID: 4059058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of synthetic mRNAs and analyses of translational efficiency in microinjected Xenopus oocytes.
    Wormington M
    Methods Cell Biol; 1991; 36():167-83. PubMed ID: 1811132
    [No Abstract]   [Full Text] [Related]  

  • 43. Coordinate control of translation and localization of Vg1 mRNA in Xenopus oocytes.
    Wilhelm JE; Vale RD; Hegde RS
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13132-7. PubMed ID: 11087864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of cloned aromatic L-amino acid decarboxylase in Xenopus laevis oocytes.
    Gudehithlu KP; Duchemin AM; Silvia CP; Neff NH; Hadjiconstantinou M
    Neurochem Int; 1992 Sep; 21(2):275-9. PubMed ID: 1303156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Xtr, a plural tudor domain-containing protein, is involved in the translational regulation of maternal mRNA during oocyte maturation in Xenopus laevis.
    Ohgami H; Hiyoshi M; Mostafa MG; Kubo H; Abe S; Takamune K
    Dev Growth Differ; 2012 Aug; 54(6):660-71. PubMed ID: 22889276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes.
    Morin A; Auxilien S; Senger B; Tewari R; Grosjean H
    RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the mechanisms involved in gene regulation and cell differentiation by microinjection of purified genes and somatic cell nuclei into amphibian oocytes and eggs.
    Etkin LD
    Differentiation; 1982 May; 21(3):149-59. PubMed ID: 7049808
    [No Abstract]   [Full Text] [Related]  

  • 48. Maturing Xenopus oocytes induce chromosome condensation in somatic plant nuclei.
    von der Haar B; Sperling K; Gregor D
    Exp Cell Res; 1981 Aug; 134(2):477-81. PubMed ID: 6168480
    [No Abstract]   [Full Text] [Related]  

  • 49. Mitochondrial transfer RNA genes from fungi (Aspergillus nidulans) and plants (Lupinus luteus) are transcribed in Xenopus laevis oocyte nuclei.
    Bartnik E; de Robertis EM
    J Mol Biol; 1983 Aug; 168(2):439-44. PubMed ID: 6350603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequence organization of the poly(A) RNA synthesized and accumulated in lampbrush chromosome stage Xenopus laevis oocytes.
    Anderson DM; Richter JD; Chamberlin ME; Price DH; Britten RJ; Smith LD; Davidson EH
    J Mol Biol; 1982 Mar; 155(3):281-309. PubMed ID: 6176716
    [No Abstract]   [Full Text] [Related]  

  • 51. Developmental regulation of translation by the 5' noncoding region of murine c-myc mRNA in Xenopus laevis.
    Lazarus P; Parkin N; Sonenberg N
    Oncogene; 1988 Nov; 3(5):517-21. PubMed ID: 3078957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes.
    Lechleiter J; Girard S; Peralta E; Clapham D
    Science; 1991 Apr; 252(5002):123-6. PubMed ID: 2011747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific inhibition of endogenous beta-tubulin synthesis in Xenopus oocytes by anti-messenger oligodeoxynucleotides.
    Jessus C; Cazenave C; Ozon R; Hélène C
    Nucleic Acids Res; 1988 Mar; 16(5):2225-33. PubMed ID: 3357774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies of microbial toxins in Xenopus laevis oocytes.
    Godeau F; Boquet P; Schorderet-Slatkine S; Schorderet M; Baulieu EE
    Exp Cell Res; 1980 Sep; 129(1):133-7. PubMed ID: 6253305
    [No Abstract]   [Full Text] [Related]  

  • 55. Nucleoskeleton and nucleo-cytoplasmic transport in oocytes and early development of Xenopus laevis.
    Rudt F; Firmbach-Kraft I; Petersen M; Pieler T; Stick R
    Int J Dev Biol; 1996 Feb; 40(1):273-8. PubMed ID: 8735938
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translation of avian sarcoma virus RNA in Xenopus laevis oocytes.
    Katz RA; Maniatis GM; Guntaka RV
    Biochem Biophys Res Commun; 1979 Jan; 86(2):447-53. PubMed ID: 218572
    [No Abstract]   [Full Text] [Related]  

  • 57. Carbon dioxide reversibly inhibits meiosis of Xenopus laevis oocyte and the appearance of the maturation promoting factor.
    Bellé R; Boyer J; Ozon R
    Dev Biol; 1982 Apr; 90(2):315-9. PubMed ID: 6804286
    [No Abstract]   [Full Text] [Related]  

  • 58. Effects of cycloheximide on the "autocatalytic" nature of the maturation promoting factor (MPF) in oocytes of Xenopus laevis.
    Drury KC; Schorderet-Slatkine S
    Cell; 1975 Mar; 4(3):269-74. PubMed ID: 1122557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Xvelo1 uses a novel 75-nucleotide signal sequence that drives vegetal localization along the late pathway in Xenopus oocytes.
    Claussen M; Pieler T
    Dev Biol; 2004 Feb; 266(2):270-84. PubMed ID: 14738876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of EGF-containing polypeptides in Xenopus oocytes microinjected with submaxillary gland mRNA.
    Burmeister M; Avivi A; Schlessinger J; Soreq H
    EMBO J; 1984 Jul; 3(7):1499-505. PubMed ID: 6378625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.