These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 6341779)

  • 21. Suppressed acid formation by cofeeding of glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site.
    Goel A; Lee J; Domach MM; Ataai MM
    Biotechnol Prog; 1995; 11(4):380-5. PubMed ID: 7654309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional control of gluconeogenesis in Aspergillus nidulans.
    Hynes MJ; Szewczyk E; Murray SL; Suzuki Y; Davis MA; Sealy-Lewis HM
    Genetics; 2007 May; 176(1):139-50. PubMed ID: 17339216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Based on biochemical and physiological behavior, where is Aspergillus egyptiacus better placed?
    Zohri AA; Ismail MA
    Folia Microbiol (Praha); 1994; 39(5):415-9. PubMed ID: 7537240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.
    da Silva MC; Bertolini MC; Ernandes JR
    J Basic Microbiol; 2001; 41(5):269-80. PubMed ID: 11688213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and antifungal properties of compounds which target the alpha-aminoadipate pathway.
    Palmer DR; Balogh H; Ma G; Zhou X; Marko M; Kaminskyj SG
    Pharmazie; 2004 Feb; 59(2):93-8. PubMed ID: 15025175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth characteristics of Saccharomyces cerevisiae and Aspergillus nidulans when biotin is replaced by aspartic and fatty acids.
    Adler JH; Gealt MA; Nes WD; Nes WR
    J Gen Microbiol; 1981 Jan; 122(1):101-7. PubMed ID: 7033444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development.
    Wilson RA; Chang PK; Dobrzyn A; Ntambi JM; Zarnowski R; Keller NP
    Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans.
    Soid-Raggi G; Sánchez O; Aguirre J
    Mol Microbiol; 2006 Feb; 59(3):854-69. PubMed ID: 16420356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors.
    Lee JI; Choi JH; Park BC; Park YH; Lee MY; Park HM; Maeng PJ
    Fungal Genet Biol; 2004 Jun; 41(6):635-46. PubMed ID: 15121085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-copy suppression of an Aspergillus nidulans mutant sensitive to camptothecin by a putative monocarboxylate transporter.
    Semighini CP; Goldman MH; Goldman GH
    Curr Microbiol; 2004 Oct; 49(4):229-33. PubMed ID: 15386109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of nutrient-dependent changes in extracellular pH and acid phosphatase secretion in Aspergillus nidulans.
    Freitas JS; Silva EM; Rossi A
    Genet Mol Res; 2007 Sep; 6(3):721-9. PubMed ID: 18050093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alpha-1,3 glucan synthesis correlated with alpha-1,3 glucanase synthesis, conidiation and fructification in morphogenetic mutants of Aspergillus nidulans.
    Zonneveld BJ
    J Gen Microbiol; 1974 Apr; 81(2):445-51. PubMed ID: 4599936
    [No Abstract]   [Full Text] [Related]  

  • 33. A quantitative survey of conidiation mutants in Aspergillus nidulans.
    Martinelli SD; Clutterbuck AJ
    J Gen Microbiol; 1971 Dec; 69(2):261-8. PubMed ID: 4947820
    [No Abstract]   [Full Text] [Related]  

  • 34. Characterization of an acyl-CoA: carboxylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification.
    Fleck CB; Brock M
    Mol Microbiol; 2008 May; 68(3):642-56. PubMed ID: 18331473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of glucose and manganese on adenosine-3',5'-monophosphate levels during growth and differentiation of Aspergillus nidulans.
    Zonneveld BJ
    Arch Microbiol; 1976 May; 108(1):41-4. PubMed ID: 179489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The production of invertase in Aspergillus nidulans with reference to the effects of glucose and sucrose.
    Andres I; Peberdy JF
    Microbios; 1974 Apr; 10(37):15-23. PubMed ID: 4605317
    [No Abstract]   [Full Text] [Related]  

  • 37. The distinctiveness of ATP:citrate lyase from Aspergillus nidulans.
    Adams IP; Dack S; Dickinson FM; Ratledge C
    Biochim Biophys Acta; 2002 May; 1597(1):36-41. PubMed ID: 12009400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient strategy for enhancing aspergiolide A production by citrate feedings and its effects on sexual development and growth of marine-derived fungus Aspergillus glaucus.
    Cai M; Zhou X; Zhou J; Niu C; Kang L; Sun X; Zhang Y
    Bioresour Technol; 2010 Aug; 101(15):6059-68. PubMed ID: 20359887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation).
    Anderson JG; Smith JE
    J Gen Microbiol; 1971 Dec; 69(2):185-97. PubMed ID: 5146836
    [No Abstract]   [Full Text] [Related]  

  • 40. [Methodological approaches to the study of ultraviolet irradiation--induced DNA degradation in mycelial fungi using the example of Aspergillus nidulans].
    Zinchenko VV
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1978; (11):30-4. PubMed ID: 363179
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.