These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6342812)

  • 1. Motility of human polymorphonuclear neutrophils: microscopic analysis of substrate adhesion and distribution of F-actin.
    Sullivan JA; Mandell GL
    Cell Motil; 1983; 3(1):31-46. PubMed ID: 6342812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human neutrophil membrane topography: examination of distribution, movement, and regeneration of recognition sites using lectins as probes.
    Weinbaum DL; Sullivan JA; Mandell GL
    J Reticuloendothel Soc; 1983 Apr; 33(4):249-61. PubMed ID: 6834362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic formation of nascent lamellae is driven by changes in the stable F-actin pool of polymorphonuclear neutrophils after stimulation with chemotactic peptide and cross-linking of CD18 or CD61.
    Ibarrondo FJ; Torres M; Coates TD
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):234-47. PubMed ID: 10602253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotactic peptide-induced changes in neutrophil actin conformation.
    Wallace PJ; Wersto RP; Packman CH; Lichtman MA
    J Cell Biol; 1984 Sep; 99(3):1060-5. PubMed ID: 6470036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils.
    Howard TH; Meyer WH
    J Cell Biol; 1984 Apr; 98(4):1265-71. PubMed ID: 6232281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils.
    Coates TD; Watts RG; Hartman R; Howard TH
    J Cell Biol; 1992 May; 117(4):765-74. PubMed ID: 1577856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal mobility of neonatal polymorphonuclear leukocytes. Relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine.
    Anderson DC; Hughes BJ; Smith CW
    J Clin Invest; 1981 Oct; 68(4):863-74. PubMed ID: 7287906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphonuclear leukocyte adherence induces actin polymerization by a transduction pathway which differs from that used by chemoattractants.
    Southwick FS; Dabiri GA; Paschetto M; Zigmond SH
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1561-9. PubMed ID: 2507552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motility and adhesiveness in human neutrophils. Redistribution of chemotactic factor-induced adhesion sites.
    Smith CW; Hollers JC
    J Clin Invest; 1980 Apr; 65(4):804-12. PubMed ID: 7358846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotaxis, spreanding nd oxidative metabolism of neutrophils: influence of albumin in vitro.
    Valerius NH
    Acta Pathol Microbiol Immunol Scand C; 1983 Feb; 91(1):43-9. PubMed ID: 6306991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations.
    Malawista SE; de Boisfleury Chevance A
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11577-82. PubMed ID: 9326652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides.
    Fechheimer M; Zigmond SH
    Cell Motil; 1983; 3(4):349-61. PubMed ID: 6640631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration.
    Eddy RJ; Pierini LM; Matsumura F; Maxfield FR
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1287-98. PubMed ID: 10704379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Monoxide-Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics.
    Inoue K; Patterson EK; Capretta A; Lawendy AR; Fraser DD; Cepinskas G
    Am J Pathol; 2017 May; 187(5):1121-1133. PubMed ID: 28320610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colchicine-induced stimulation of PMN motility related to cytoskeletal changes in actin, alpha-actinin, and myosin.
    Keller HU; Niggli V
    Cell Motil Cytoskeleton; 1993; 25(1):10-8. PubMed ID: 8519064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diminished actin polymerization by neutrophils from newborn infants.
    Harris MC; Shalit M; Southwick FS
    Pediatr Res; 1993 Jan; 33(1):27-31. PubMed ID: 8433856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative actin polymerization in neonatal and adult bovine neutrophils in vitro.
    Bochsler PN; Neilsen NR; Slauson DO
    Pediatr Res; 1992 Nov; 32(5):509-13. PubMed ID: 1480449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils.
    Norgauer J; Just I; Aktories K; Sklar LA
    J Cell Biol; 1989 Sep; 109(3):1133-40. PubMed ID: 2768337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis.
    Valerius NH; Stendahl O; Hartwig JH; Stossel TP
    Cell; 1981 Apr; 24(1):195-202. PubMed ID: 7016336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of neutrophils function as a result of prior exposure to chemotactic factor.
    Van Epps DE; Garcia ML
    J Clin Invest; 1980 Aug; 66(2):167-75. PubMed ID: 6249846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.