These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6342855)

  • 1. Optimized procedures for investigating changes in human erythrocyte membrane proteins using treatment with calcium and various proteases.
    Jones GL
    Clin Chim Acta; 1983 May; 130(1):1-9. PubMed ID: 6342855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red cell membrane proteins in insulin-dependent diabetes: differential effects of treatment with calcium and various proteases.
    Jones GL
    Biochem Med; 1984 Dec; 32(3):398-403. PubMed ID: 6393955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrin extractability from erythrocyte in Duchenne muscular dystrophies and the effect of proteases on erythrocyte ghosts.
    Tsuchiya Y; Sugita H; Ishiura S; Imahori K
    Clin Chim Acta; 1981 Feb; 109(3):285-93. PubMed ID: 6452973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of abnormally [32P]-phosphorylated cyanogen bromide cleavage product of erythrocyte membrane spectrin in Duchenne muscular dystrophy.
    Roses AD; Shile PE; Herbstreith MH; Balakrishnan CV
    Neurology; 1981 Aug; 31(8):1026-30. PubMed ID: 7196515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosol proteins and proteases.
    Allen DW; Cadman S
    Biochim Biophys Acta; 1979 Feb; 551(1):1-9. PubMed ID: 427145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of endogenous proteases on the spectrin binding proteins of human erythrocytes.
    Siegel DL; Goodman SR; Branton D
    Biochim Biophys Acta; 1980 Jun; 598(3):517-27. PubMed ID: 6770900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic-strength-dependent changes in the structure of the major protein of the human erythrocyte membrane.
    Jenkins RE; Tanner MJ
    Biochem J; 1977 Jan; 161(1):131-8. PubMed ID: 851415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artefacts due to sodium dodecylsulfate polyacrylamide gel electrophoresis in the study of human erythrocyte membrane calcium binding protein.
    Boivin P; Bernard JF; Bournier O
    Biomedicine; 1976 Dec; 25(9):315. PubMed ID: 1000037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered component a phosphorylation in erythrocyte membranes in myotonic muscular dystrophy.
    Wong P; Roses AD
    Prog Clin Biol Res; 1978; 21():479-91. PubMed ID: 662903
    [No Abstract]   [Full Text] [Related]  

  • 10. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.
    Croall DE; Morrow JS; DeMartino GN
    Biochim Biophys Acta; 1986 Jul; 882(3):287-96. PubMed ID: 3015225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte spectrin in Duchenne muscular dystrophy.
    Anand R; Emery AE
    Clin Chim Acta; 1981 Dec; 117(3):345-54. PubMed ID: 7318186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipids and proteins of erythrocyte membrane in Duchenne muscular dystrophy.
    Kobayashi T; Mawatari S; Kuroiwa Y
    Clin Chim Acta; 1978 May; 85(3):259-66. PubMed ID: 657522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Erythrocyte membrane protein in Duchenne muscular dystrophy (author's transl)].
    Herranz J; Mazo E; Arteaga R; Hermosa V; Zubizarreta A
    An Esp Pediatr; 1981 Nov; 15(5):433-42. PubMed ID: 7332144
    [No Abstract]   [Full Text] [Related]  

  • 14. High resolution two-dimensional gel electrophoresis of human erythrocyte membrane proteins.
    Copeland BR; Todd SA; Furlong CE
    Am J Hum Genet; 1982 Jan; 34(1):15-31. PubMed ID: 7081216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis of red cell membrane proteins by immunoglobulin G preparations.
    Victoria EJ; Mahan LC
    Mol Immunol; 1981 Aug; 18(8):699-704. PubMed ID: 7031464
    [No Abstract]   [Full Text] [Related]  

  • 16. Endogenous proteolysis of the human erythrocyte membrane as studied by two-dimensional gel electrophoresis and electron spin resonance.
    Gromov PS; Zakharov SF; Shishkin SS; Gaczyńska M; Bartosz G; Grzelińska E
    Int J Biochem; 1989; 21(8):941-5. PubMed ID: 2555232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolytic susceptibility of membrane proteins during erythrocyte aging.
    Gaczyńska M; Rosin J; Soszyński M; Bartosz G
    Mech Ageing Dev; 1986 Jul; 35(2):109-21. PubMed ID: 3736134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium effects on human erythrocyte membrane proteins.
    King LE; Morrison M
    Biochim Biophys Acta; 1977 Nov; 471(1):162-8. PubMed ID: 921972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between phosphorylation and adenosine triphosphate-dependent Ca2+ binding of swine and bovine erythrocyte membranes.
    Kawaguchi T; Konishi K
    Biochim Biophys Acta; 1980 Apr; 597(3):577-86. PubMed ID: 6246940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transport inhibition by proteolytic degradation of the human erythrocyte membrane inner surface.
    Masiak SJ; LeFevre PG
    Biochim Biophys Acta; 1977 Mar; 465(2):371-7. PubMed ID: 16250347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.