These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6344481)

  • 1. [Intracellular feedback in the electromechanical coupling processes in the mammalian myocardium].
    Bogdanov KIu; Zakharov SI; Rozenshtraukh LV
    Usp Fiziol Nauk; 1983; 14(2):116-33. PubMed ID: 6344481
    [No Abstract]   [Full Text] [Related]  

  • 2. [A new group of competitive divalent Ca-antagonists (iproveratril, D 600, prenylamine) with potent inhibitory effects on electromechanical coupling in mammalian myocardium].
    Fleckenstein A; Tritthart H; Flackenstein B; Herbst A; Grün G
    Pflugers Arch; 1969; 307(2):R25. PubMed ID: 5814829
    [No Abstract]   [Full Text] [Related]  

  • 3. [Characteristics of the biochemical mechanisms of electromechanical coupling in the myocardium].
    Boldyrev AA
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1982; (4):5-17. PubMed ID: 6282345
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of increased mechanical loading on the relation between the contraction of isolated cardiac muscle and the concentration of Ca++ in the perfusate].
    Kapel'ko VI; Gorina MS; Novikova NA; Malinovskaia KI
    Fiziol Zh SSSR Im I M Sechenova; 1983 Aug; 69(8):1053-7. PubMed ID: 6628750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelations between action potential and contractile response of heart muscle.
    Bravený P; Sumbera J
    Cardiovasc Res; 1971 Jul; Suppl 1():109-11. PubMed ID: 5143793
    [No Abstract]   [Full Text] [Related]  

  • 6. [Role of the relationship between the intensity of contractile function and myocardial relaxation rate in adaptation of the heart to heavy loads].
    Meerson FZ; Kapel'ko VI
    Kardiologiia; 1974 Jul; 14(7):43-53. PubMed ID: 4279312
    [No Abstract]   [Full Text] [Related]  

  • 7. [Evaluation of the mechanic performance of the heart using isolated papillary muscles. Critical analysis of the method].
    Okoshi MP; Cicogna AC
    Arq Bras Cardiol; 1994 May; 62(5):357-60. PubMed ID: 7998870
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effects of endothelin on electrophysiological and contractile activity of guinea pig papillary muscles].
    Zhang Z; Li YL; He RR
    Sheng Li Xue Bao; 1997 Apr; 49(2):146-52. PubMed ID: 9812849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mathematical model of electromechanical coupling in the rat myocardium].
    Mukumov MR; Istarova LG; Liakhovich IuS; Sorokin LV; Baum PB
    Biofizika; 1985; 30(2):317-21. PubMed ID: 3986234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of strophanthin and Ca++ on 02 cosumption and the mechanics (contraction and tonus) of the papillary muscles of guinea pigs].
    Koyama T; Brecht K; Koyama Y
    Z Kreislaufforsch; 1966 Aug; 55(8):838-45. PubMed ID: 5998664
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of mibefradil, a blocker of T-type Ca2+ channels, in single myocytes and intact muscle of guinea-pig heart.
    Emanuel K; Mackiewicz U; Pytkowski B; Lewartowski B
    J Physiol Pharmacol; 1998 Dec; 49(4):577-90. PubMed ID: 10069698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of aprindine on the electromechanical coupling of the myocardium and smooth muscle].
    Cargnelli G; Finotti P; Gobbato S; Padrini R
    Boll Soc Ital Biol Sper; 1980 Mar; 56(5):474-80. PubMed ID: 7387791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An experimental model of the mechanical heterogeneity of the myocardium].
    Bliakhman FA; nafikov KhM; Markhasin VS; Izakov VIa
    Fiziol Zh SSSR Im I M Sechenova; 1988 Aug; 74(8):1191-5. PubMed ID: 3197862
    [No Abstract]   [Full Text] [Related]  

  • 14. Phospholamban and cardiac contractile function.
    Brittsan AG; Kranias EG
    J Mol Cell Cardiol; 2000 Dec; 32(12):2131-9. PubMed ID: 11112989
    [No Abstract]   [Full Text] [Related]  

  • 15. [Role of specific antibodies in the processes of electromechanical coupling in the myocardium].
    Ianchiĭ RI
    Fiziol Zh (1978); 1978; 24(6):779-87. PubMed ID: 309834
    [No Abstract]   [Full Text] [Related]  

  • 16. Subcellular features of calcium signalling in heart muscle: what do we learn?
    Niggli E; Lipp P
    Cardiovasc Res; 1995 Apr; 29(4):441-8. PubMed ID: 7796437
    [No Abstract]   [Full Text] [Related]  

  • 17. On the roles of long-chain acyl carnitine accumulation and impaired glucose utilization in ischaemic contracture development and tissue damage in the guinea-pig heart.
    Clarke B; Wyatt KM; May GR; McCormack JG
    J Mol Cell Cardiol; 1996 Jan; 28(1):171-81. PubMed ID: 8745225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Na+-H+ exchanger (NHE1) in heart muscle function during transient acidosis. A study in papillary muscles from rat and guinea pig hearts.
    Sundset R; Bertelsen G; Ytrehus K
    Can J Physiol Pharmacol; 2003 Oct; 81(10):937-43. PubMed ID: 14608410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on Ca(2+)-dependent and mechanical modulators of relaxation in mammalian myocardium.
    Dobrunz LE; Berman MR
    J Mol Cell Cardiol; 1994 Feb; 26(2):243-50. PubMed ID: 8006985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of caffeine on rest- and excitation-dependent calcium exchange in ventricular muscle of guinea pig heart.
    Lewartowski B; Pytkowski B
    Pol J Pharmacol Pharm; 1984; 36(6):617-24. PubMed ID: 6535155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.