BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 6345062)

  • 1. Size of the unwound region of DNA in Escherichia coli RNA polymerase and calf thymus RNA polymerase II ternary complexes.
    Gamper HB; Hearst JE
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():455-61. PubMed ID: 6345062
    [No Abstract]   [Full Text] [Related]  

  • 2. Transcription of polyoma virus DNA in vitro. III. Localization of calf thymus RNA polymerase II binding sites.
    Lescure B; Dauguet C; Yaniv M
    J Mol Biol; 1978 Sep; 124(1):87-96. PubMed ID: 213608
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative study of calf thymus and wheat germ RNA polymerase II: stability of initiation complexes and elongation rates.
    Saragosti S; Lescure B; Yaniv M
    Biochem Biophys Res Commun; 1979 Jun; 88(3):1077-84. PubMed ID: 223568
    [No Abstract]   [Full Text] [Related]  

  • 4. [Transcription of DNA by RNA polymerases of E. coli and calf thymus].
    Kozlov IuV; Shilov AA
    Mol Biol (Mosk); 1975; 9(1):70-7. PubMed ID: 768744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of chromatin. Initial and terminal nucleotides of ribonucleic acid synthesized by calf thymus and Escherichia coli ribonucleic acid polymerases.
    Keshgegian AA; Garibian GS; Furth JJ
    Biochemistry; 1973 Oct; 12(22):4337-42. PubMed ID: 4584322
    [No Abstract]   [Full Text] [Related]  

  • 6. Formation of a single phosphodiester bond by RNA polymerase B from calf thymus is not inhibited by alpha-amanitin.
    Vaisius AC; Wieland T
    Biochemistry; 1982 Jun; 21(13):3097-101. PubMed ID: 7104312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.
    Schulz A; Langowski J; Rippe K
    J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA synthesized in vitro by calf thymus RNA polymerase III (C), as well as by E. coli RNA polymerase, is restricted to a subset of calf thymus DNA.
    Atikkan EE; Furth JJ
    Cell Differ; 1977 Oct; 6(3-4):253-62. PubMed ID: 334372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of fractionated calf thymus chromatin by RNA polymerase of calf thymus and Escherichia coli.
    Henner D; Kelley RI; Furth JJ
    Biochemistry; 1975 Oct; 14(21):4764-71. PubMed ID: 1101956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that there are two basically different types of protein present in calf thymus, which stimulates the DNA dependent RNA polymerase reaction.
    Lukacs N; Stein H
    FEBS Lett; 1976 Oct; 69(1):295-9. PubMed ID: 791673
    [No Abstract]   [Full Text] [Related]  

  • 11. Animal DNA-dependent RNA polymerases. Initiation sites on calf-thymus DNA.
    Meilhac M; Chambon P
    Eur J Biochem; 1973 Jun; 35(3):454-63. PubMed ID: 4581266
    [No Abstract]   [Full Text] [Related]  

  • 12. Identifying regulators of transcript elongation in eukaryotes.
    Edwards AM; Kane CM
    Methods Enzymol; 1996; 274():419-36. PubMed ID: 8902822
    [No Abstract]   [Full Text] [Related]  

  • 13. The apical localization of transcribing RNA polymerases on supercoiled DNA prevents their rotation around the template.
    ten Heggeler-Bordier B; Wahli W; Adrian M; Stasiak A; Dubochet J
    EMBO J; 1992 Feb; 11(2):667-72. PubMed ID: 1537341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of transcription of chromatin by calf thymus and E. coli RNA polymerases.
    Keshgegian AA; Furth JJ
    Biochem Biophys Res Commun; 1972 Aug; 48(4):757-63. PubMed ID: 4564639
    [No Abstract]   [Full Text] [Related]  

  • 15. Similar binding site for P37 factor on yeast RNA polymerases A and B.
    Sawadogo M; Huet J; Fromageot P
    Biochem Biophys Res Commun; 1980 Sep; 96(1):258-64. PubMed ID: 7002153
    [No Abstract]   [Full Text] [Related]  

  • 16. Specific termination of in vitro transcription by calf thymus RNA polymerase III.
    Watson JB; Chandler DW; Gralla JD
    Nucleic Acids Res; 1984 Jul; 12(13):5369-84. PubMed ID: 6087284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of in vitro transcription by calf thymus RNA polymerase II using a novel duplex DNA template.
    Kadesch TR; Chamberlin MJ
    J Biol Chem; 1982 May; 257(9):5286-95. PubMed ID: 7068686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-primed DNA synthesis by an enzyme preparation of calf thymus containing highly enriched RNA polymerase B and DNA polymerase.
    Drescher B; Grade K
    Acta Biol Med Ger; 1979; 38(7):923-7. PubMed ID: 543371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deoxyribonucleic acid dependent ribonucleic acid polymerase II specific initiation and elongation factors from calf thymus.
    Spindler SR
    Biochemistry; 1979 Sep; 18(18):4042-8. PubMed ID: 486411
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphorylative and functional modifications of nucleoplasmic RNA polymerase II by homologous adenosine 3':5'-monophosphate-dependent protein kinase from calf thymus and by heterologous phosphatase.
    Kranias EG; Schweppe JS; Jungmann RA
    J Biol Chem; 1977 Oct; 252(19):6750-8. PubMed ID: 197104
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.