These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 6345502)
21. Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. Ferrández A; Garciá JL; Díaz E J Bacteriol; 1997 Apr; 179(8):2573-81. PubMed ID: 9098055 [TBL] [Abstract][Full Text] [Related]
22. Effects of reduced phenolic acids on metabolism of propionate and palmitate in bovine liver tissue in vitro. Cremin JD; Drackley JK; Grum DE; Hansen LR; Fahey GC J Dairy Sci; 1994 Dec; 77(12):3608-17. PubMed ID: 7699139 [TBL] [Abstract][Full Text] [Related]
23. Coexistence of different pathways in the metabolism of n-propylbenzene by Pseudomonas sp. Jigami Y; Kawasaki Y; Omori T; Minoda Y Appl Environ Microbiol; 1979 Nov; 38(5):783-8. PubMed ID: 543699 [TBL] [Abstract][Full Text] [Related]
25. Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor. Sariaslani FS; Harper DB; Higgins IJ Biochem J; 1974 Apr; 140(1):31-45. PubMed ID: 4451551 [TBL] [Abstract][Full Text] [Related]
26. 3-Hydroxy- and 3-keto-3-phenylpropionic acids: novel metabolites of benzoic acid in horse urine. Marsh MV; Caldwell J; Hutt AJ; Smith RL; Horner MW; Houghton E; Moss MS Biochem Pharmacol; 1982 Oct; 31(20):3225-30. PubMed ID: 7150351 [TBL] [Abstract][Full Text] [Related]
27. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. Shaibe E; Metzer E; Halpern YS J Bacteriol; 1985 Sep; 163(3):933-7. PubMed ID: 3897201 [TBL] [Abstract][Full Text] [Related]
28. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545 [TBL] [Abstract][Full Text] [Related]
29. An ethanol-inducible MDR ethanol dehydrogenase/acetaldehyde reductase in Escherichia coli: structural and enzymatic relationships to the eukaryotic protein forms. Shafqat J; Höög JO; Hjelmqvist L; Oppermann UC; Ibáñez C; Jörnvall H Eur J Biochem; 1999 Jul; 263(2):305-11. PubMed ID: 10406936 [TBL] [Abstract][Full Text] [Related]
30. Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants. Dover S; Halpern YS J Bacteriol; 1972 Feb; 109(2):835-43. PubMed ID: 4550821 [TBL] [Abstract][Full Text] [Related]
31. Enantioselective Metabolism of Chiral 3-Phenylbutyric Acid, an Intermediate of Linear Alkylbenzene Degradation, by Rhodococcus rhodochrous PB1. Simoni S; Klinke S; Zipper C; Angst W; Kohler HE Appl Environ Microbiol; 1996 Mar; 62(3):749-55. PubMed ID: 16535265 [TBL] [Abstract][Full Text] [Related]
32. Constituents of Justicia pectoralis Jacq. 2. Gas chromatography/mass spectrometry of simple coumarins, 3-phenylpropionic acids and their hydroxy and methoxy derivatives. de Vries JX; Tauscher B; Wurzel G Biomed Environ Mass Spectrom; 1988 Apr; 15(8):413-7. PubMed ID: 3382796 [TBL] [Abstract][Full Text] [Related]
33. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Wang S; Zhang S; Xiao A; Rasmussen M; Skidmore C; Zhan J Metab Eng; 2015 May; 29():153-159. PubMed ID: 25819309 [TBL] [Abstract][Full Text] [Related]
34. Microbial Production of Natural and Unnatural Monolignols with Escherichia coli. Aschenbrenner J; Marx P; Pietruszka J; Marienhagen J Chembiochem; 2019 Apr; 20(7):949-954. PubMed ID: 30537293 [TBL] [Abstract][Full Text] [Related]
35. Biosynthesis of (R)-2-hydroxy-3-phenylpropionic acid using whole recombinant Escherichia coli cells in an aqueous/n-octane biphasic system. Zhu YB; Xu Y; Wang LM; Qi B J Zhejiang Univ Sci B; 2018 Apr.; 19(4):285-292. PubMed ID: 29616504 [TBL] [Abstract][Full Text] [Related]
36. Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Gilligan T; Yamada H; Nagasawa T Appl Microbiol Biotechnol; 1993 Aug; 39(6):720-5. PubMed ID: 7764117 [TBL] [Abstract][Full Text] [Related]
37. Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. Brock M; Maerker C; Schütz A; Völker U; Buckel W Eur J Biochem; 2002 Dec; 269(24):6184-94. PubMed ID: 12473114 [TBL] [Abstract][Full Text] [Related]
38. Formation of glycine conjugate and (-)-(R)-enantiomer from (+)-(S)-2-phenylpropionic acid suggesting the formation of the CoA thioester intermediate of (+)-(S)-enantiomer in dogs. Tanaka Y; Shimomura Y; Hirota T; Nozaki A; Ebata M; Takasaki W; Shigehara E; Hayashi R; Caldwell J Chirality; 1992; 4(6):342-8. PubMed ID: 1449948 [TBL] [Abstract][Full Text] [Related]
39. 3-phenylpropionate catabolism and the Escherichia coli oxidative stress response. Turlin E; Sismeiro O; Le Caer JP; Labas V; Danchin A; Biville F Res Microbiol; 2005 Apr; 156(3):312-21. PubMed ID: 15808934 [TBL] [Abstract][Full Text] [Related]
40. Antimicrobial Chlorinated 3-Phenylpropanoic Acid Derivatives from the Red Sea Marine Actinomycete Shaala LA; Youssef DTA; Alzughaibi TA; Elhady SS Mar Drugs; 2020 Aug; 18(9):. PubMed ID: 32867397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]