These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 6345671)
21. T lymphocytes infiltrating sites of tumor rejection and progression display identical V beta usage but different cytotoxic activities. Kurt RA; Park JA; Panelli MC; Schluter SF; Marchalonis JJ; Carolus B; Akporiaye ET J Immunol; 1995 Apr; 154(8):3969-74. PubMed ID: 7706735 [TBL] [Abstract][Full Text] [Related]
22. Effector cells derived from host CD8 memory T cells mediate rapid resistance against minor histocompatibility antigen-mismatched allogeneic marrow grafts without participation of perforin, Fas ligand, and the simultaneous inhibition of 3 tumor necrosis factor family effector pathways. Zimmerman Z; Shatry A; Deyev V; Podack E; Mammolenti M; Blazar BR; Yagita H; Levy RB Biol Blood Marrow Transplant; 2005 Aug; 11(8):576-86. PubMed ID: 16041307 [TBL] [Abstract][Full Text] [Related]
23. Effect of tumor necrosis factor alpha and intercellular adhesion molecule-1 expression on immunogenicity of murine liver cells in mice. Bumgardner GL; Li J; Apte S; Heininger M; Frankel WL Hepatology; 1998 Aug; 28(2):466-74. PubMed ID: 9696013 [TBL] [Abstract][Full Text] [Related]
24. The chemokine receptor CCR7 controls lymph node-dependent cytotoxic T cell priming in alloimmune responses. Höpken UE; Droese J; Li JP; Joergensen J; Breitfeld D; Zerwes HG; Lipp M Eur J Immunol; 2004 Feb; 34(2):461-70. PubMed ID: 14768051 [TBL] [Abstract][Full Text] [Related]
25. Thymic and extrathymic differentiation and expansion of T lymphocytes following bone marrow transplantation in irradiated recipients. Dulude G; Brochu S; Fontaine P; Baron C; Gyger M; Roy DC; Perreault C Exp Hematol; 1997 Aug; 25(9):992-1004. PubMed ID: 9257813 [TBL] [Abstract][Full Text] [Related]
26. Demonstration of local immunosuppression with methylprednisolone in the sponge matrix allograft model. Freise CE; Clemmings S; Clemens LE; Alan T; Ashby T; Ashby E; Burke EC; Roberts JP; Ascher NL Transplantation; 1991 Aug; 52(2):318-25. PubMed ID: 1871806 [TBL] [Abstract][Full Text] [Related]
28. Nitric oxide production by mouse sponge matrix allograft-infiltrating cells. Comparison with the rat species. Hoffman RA; Langrehr JM; Dull KE; Simmons RL Transplantation; 1993 Mar; 55(3):591-6. PubMed ID: 8456479 [TBL] [Abstract][Full Text] [Related]
29. Use of sponge matrix allografts for concurrent monitoring of immunologic and pharmacologic events at a graft site. Sirinek LP; Zinn NE; Ferguson RM; Orosz CG Transplantation; 1987 Jul; 44(1):161-4. PubMed ID: 3603678 [No Abstract] [Full Text] [Related]
31. Donor-specific cytotoxicity induced by allogeneic intestinal epithelial cells in a sponge matrix model. Li XC; Zhong R; Zhu L; Grant D Transpl Int; 1995; 8(1):13-9. PubMed ID: 7888046 [TBL] [Abstract][Full Text] [Related]
32. Local immunosuppressive therapy with monoclonal anti-T cell antibody on renal allograft survival in the rat. Lee CJ; Yoshimura N; Shiho O; Kita M; Oka T Clin Exp Immunol; 1993 Mar; 91(3):362-7. PubMed ID: 7680292 [TBL] [Abstract][Full Text] [Related]
33. Immunohistological observations in rat kidney allografts after local steroid administration. Ruers TJ; Buurman WA; van Boxtel CJ; van der Linden CJ; Kootstra G J Exp Med; 1987 Nov; 166(5):1205-20. PubMed ID: 3119756 [TBL] [Abstract][Full Text] [Related]
34. An implantable pump for intrarenal infusion of immunosuppressants in a canine autotransplant model. Gruber SA; Cipolle RJ; Canafax DM; Erdmann GR; Burke BA; Rabatin JT; Hynes PE; Ritz JA; Gould FH; Ascher NL Pharm Res; 1988 Dec; 5(12):781-5. PubMed ID: 3073381 [TBL] [Abstract][Full Text] [Related]
35. T lymphocyte cloning from rejected human kidney allografts. Growth frequency and functional/phenotypic analysis. Moreau JF; Bonneville M; Peyrat MA; Godard A; Jacques Y; Desgranges C; Soulillou JP J Clin Invest; 1986 Oct; 78(4):874-9. PubMed ID: 3020092 [TBL] [Abstract][Full Text] [Related]
36. Maturation of cytotoxic T cells within sponge matrix allografts. Ascher NL; Chen S; Hoffman RA; Simmons RL J Immunol; 1983 Aug; 131(2):617-21. PubMed ID: 6345671 [TBL] [Abstract][Full Text] [Related]
37. In vivo mechanisms of alloreactivity. I. Frequency of donor-reactive cytotoxic T lymphocytes in sponge matrix allografts. Orosz CG; Zinn NE; Sirinek L; Ferguson RM Transplantation; 1986 Jan; 41(1):75-83. PubMed ID: 2934878 [TBL] [Abstract][Full Text] [Related]
38. Cytotoxic T cells play no essential role in acute rejection of orthotopic corneal allografts in mice. Yamada J; Ksander BR; Streilein JW Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):386-92. PubMed ID: 11157871 [TBL] [Abstract][Full Text] [Related]
39. Modification of the sponge allograft model to study the immune response to bone marrow cells. Moen RC; Schears GJ; Hong R Bone Marrow Transplant; 1987 Apr; 1(4):389-96. PubMed ID: 3332146 [TBL] [Abstract][Full Text] [Related]
40. Two types of allograft-induced cytotoxic macrophage, one against allografts and the other against syngeneic or allogeneic tumor cells. Yoneda Y; Tashiro-Yamaji J; Kubota T; Yoshida R Microbiol Immunol; 2008 Jul; 52(7):349-56. PubMed ID: 18667033 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]