These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6345795)

  • 1. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNAphe.
    Paulsen H; Robertson JM; Wintermeyer W
    J Mol Biol; 1983 Jun; 167(2):411-26. PubMed ID: 6345795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ribosome binding and translocation on the anticodon of tRNAPhe as studied by wybutine fluorescence.
    Paulsen H; Robertson JM; Wintermeyer W
    Nucleic Acids Res; 1982 Apr; 10(8):2651-63. PubMed ID: 7043399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA topography during translocation: steady-state and kinetic fluorescence energy-transfer studies.
    Paulsen H; Wintermeyer W
    Biochemistry; 1986 May; 25(10):2749-56. PubMed ID: 3521720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ribosomal entry and acceptor transfer ribonucleic acid binding sites on Escherichia coli 70S ribosomes. Fluorescence energy transfer measurements from Phe-tRNAPhe to the 3' end of 16S ribonucleic acid.
    Robbins D; Hardesty B
    Biochemistry; 1983 Nov; 22(24):5675-9. PubMed ID: 6197085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes.
    Rose SJ; Lowary PT; Uhlenbeck OC
    J Mol Biol; 1983 Jun; 167(1):103-17. PubMed ID: 6345793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An energy transfer equilibrium between two identical copies of a ribosome-bound fluorescent transfer RNA analogue: implications for the possible structure of codon-anticodon complexes.
    Fairclough RH; Cantor CR
    J Mol Biol; 1979 Aug; 132(4):587-601. PubMed ID: 393827
    [No Abstract]   [Full Text] [Related]  

  • 7. Pre-steady-state kinetics of ribosomal translocation.
    Robertson JM; Paulsen H; Wintermeyer W
    J Mol Biol; 1986 Nov; 192(2):351-60. PubMed ID: 3550101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe.
    Robertson JM; Wintermeyer W
    J Mol Biol; 1981 Sep; 151(1):57-79. PubMed ID: 7035680
    [No Abstract]   [Full Text] [Related]  

  • 9. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction].
    Katunin VI; Kirillov SV
    Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational dynamics of the anticodon loop in yeast tRNAPhe as sensed by the fluorescence of wybutine.
    Claesens F; Rigler R
    Eur Biophys J; 1986; 13(6):331-42. PubMed ID: 3530734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the constant uridine in binding of yeast tRNAPhe anticodon arm to 30S ribosomes.
    Uhlenbeck OC; Lowary PT; Wittenberg WL
    Nucleic Acids Res; 1982 Jun; 10(11):3341-52. PubMed ID: 7048255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of yeast tRNAPhe with ribosomes from yeast and Escherichia coli. A fluorescence spectroscopic study.
    Robertson JM; Kahan M; Wintermeyer W; Zachau HG
    Eur J Biochem; 1977 Jan; 72(1):117-25. PubMed ID: 318996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of transfer ribonucleic acid on Escherichia coli ribosomes. Distance from the 3' end of 16S ribonucleic acid to three points on phenylalanine-accepting transfer ribonucleic acid in the donor site of 70S ribosomes.
    Robbins D; Odom OW; Lynch J; Kramer G; Hardesty B; Liou R; Ofengand J
    Biochemistry; 1981 Sep; 20(18):5301-9. PubMed ID: 6170320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography.
    Lim V; Venclovas C; Spirin A; Brimacombe R; Mitchell P; Müller F
    Nucleic Acids Res; 1992 Jun; 20(11):2627-37. PubMed ID: 1614849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of translocation: relative arrangement of tRNA and mRNA on the ribosome.
    Matzke AJ; Barta A; Kuechler E
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5110-4. PubMed ID: 6159638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome.
    Agrawal RK; Penczek P; Grassucci RA; Li Y; Leith A; Nierhaus KH; Frank J
    Science; 1996 Feb; 271(5251):1000-2. PubMed ID: 8584922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destabilization of codon-anticodon interaction in the ribosomal exit site.
    Lill R; Wintermeyer W
    J Mol Biol; 1987 Jul; 196(1):137-48. PubMed ID: 2443714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distance between the anticodon loops of two tRNAs bound to the 70 S Escherichia coli ribosome.
    Fairclough RH; Cantor CR
    J Mol Biol; 1979 Aug; 132(4):575-86. PubMed ID: 393826
    [No Abstract]   [Full Text] [Related]  

  • 20. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding.
    Bujalowski W; Graeser E; McLaughlin LW; Proschke D
    Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.