These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6345801)

  • 21. Microfilarial perforation of the midgut of a mosquito.
    Perrone JB; Spielman A
    J Parasitol; 1986 Oct; 72(5):723-7. PubMed ID: 3806321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes.
    Zieler H; Garon CF; Fischer ER; Shahabuddin M
    J Exp Biol; 2000 May; 203(Pt 10):1599-611. PubMed ID: 10769222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mosquito trypsin: immunocytochemical localization in the midgut of blood-fed Aedes aegypti (L.).
    Graf R; Raikhel AS; Brown MR; Lea AO; Briegel H
    Cell Tissue Res; 1986; 245(1):19-27. PubMed ID: 3524850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston.
    Wilkins S; Billingsley PF
    Insect Biochem Mol Biol; 2001 Sep; 31(10):937-48. PubMed ID: 11483430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxypeptidase B in Anopheles gambiae (Diptera: Culicidae): effects of abdominal distention and blood ingestion.
    Moskalyk LA
    J Med Entomol; 1998 May; 35(3):216-21. PubMed ID: 9615537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The occurrence and fate of the meconium and meconial peritrophic membranes in pupal and adult mosquitoes (Diptera: Culicidae).
    Romoser WS; Moll RM; Moncayo AC; Lerdthusnee K
    J Med Entomol; 2000 Nov; 37(6):893-6. PubMed ID: 11126546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis.
    Moll RM; Romoser WS; Modrzakowski MC; Moncayo AC; Lerdthusnee K
    J Med Entomol; 2001 Jan; 38(1):29-32. PubMed ID: 11268687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti.
    Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE
    Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructural changes in midgut cells of female Aedes aegypti L. (Insecta, Diptera) after starvation or sugar diet.
    Bauer P; Rudin W; Hecker H
    Cell Tissue Res; 1977 Feb; 177(2):215-9. PubMed ID: 837408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae.
    Devenport M; Fujioka H; Jacobs-Lorena M
    Insect Mol Biol; 2004 Aug; 13(4):349-58. PubMed ID: 15271206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 16S rRNA gene-based identification of Elizabethkingia meningoseptica (Flavobacteriales: Flavobacteriaceae) as a dominant midgut bacterium of the Asian malaria vector Anopheles stephensi (Dipteria: Culicidae) with antimicrobial activities.
    Ngwa CJ; Glöckner V; Abdelmohsen UR; Scheuermayer M; Fischer R; Hentschel U; Pradel G
    J Med Entomol; 2013 Mar; 50(2):404-14. PubMed ID: 23540130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections.
    Kalappa DM; Subramani PA; Basavanna SK; Ghosh SK; Sundaramurthy V; Uragayala S; Tiwari S; Anvikar AR; Valecha N
    Malar J; 2018 Oct; 17(1):385. PubMed ID: 30359252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induced immunity against the mosquito Anopheles stephensi (Diptera: Culicidae): effects of cell fraction antigens on survival, fecundity, and plasmodium berghei (Eucoccidiida: Plasmodiidae) transmission.
    Almeida AP; Billingsley PF
    J Med Entomol; 2002 Jan; 39(1):207-14. PubMed ID: 11931258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructural localization of phenoloxidase in the midgut of refractory Anopheles gambiae and association of the enzyme with encapsulated Plasmodium cynomolgi.
    Paskewitz SM; Brown MR; Collins FH; Lea AO
    J Parasitol; 1989 Aug; 75(4):594-600. PubMed ID: 2503600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi.
    Sharma A; Dhayal D; Singh OP; Adak T; Bhatnagar RK
    Acta Trop; 2013 Oct; 128(1):41-7. PubMed ID: 23796588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti.
    Perrone JB; Spielman A
    Cell Tissue Res; 1988 May; 252(2):473-8. PubMed ID: 3383223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts.
    Chen S; Bagdasarian M; Walker ED
    Appl Environ Microbiol; 2015 Mar; 81(6):2233-43. PubMed ID: 25595771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimidgut antibodies inhibit peritrophic membrane formation in the posterior midgut of Anopheles tessellatus (Diptera: Culicidae).
    Ramasamy MS; Raschid L; Srikrishnaraj KA; Ramasamy R
    J Med Entomol; 1996 Jan; 33(1):162-4. PubMed ID: 8906922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae).
    Suneja A; Gulia M; Gakhar SK
    Arch Insect Biochem Physiol; 2003 Feb; 52(2):63-70. PubMed ID: 12529861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).
    Okech B; Arai M; Matsuoka H
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1113-8. PubMed ID: 16469295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.