These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6346060)

  • 1. Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39.
    Breter HJ; Ferguson J; Peterson TA; Reed SI
    Mol Cell Biol; 1983 May; 3(5):881-91. PubMed ID: 6346060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary characterization of the transcriptional and translational products of the Saccharomyces cerevisiae cell division cycle gene CDC28.
    Reed SI; Ferguson J; Groppe JC
    Mol Cell Biol; 1982 Apr; 2(4):412-25. PubMed ID: 6287237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence of the yeast cell division cycle start genes CDC28, CDC36, CDC37, and CDC39, and a structural analysis of the predicted products.
    Ferguson J; Ho JY; Peterson TA; Reed SI
    Nucleic Acids Res; 1986 Aug; 14(16):6681-97. PubMed ID: 3018676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway.
    de Barros Lopes M; Ho JY; Reed SI
    Mol Cell Biol; 1990 Jun; 10(6):2966-72. PubMed ID: 2111445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene.
    Nasmyth KA; Reed SI
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2119-23. PubMed ID: 6246523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae.
    Shuster JR
    Mol Cell Biol; 1982 Sep; 2(9):1052-63. PubMed ID: 6757719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Start" mutants of Saccharomyces cerevisiae are suppressed in carbon catabolite-derepressing medium.
    Shuster JR
    J Bacteriol; 1982 Aug; 151(2):1059-61. PubMed ID: 7047491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CDC36 and CDC39 are negative elements in the signal transduction pathway of yeast.
    Neiman AM; Chang F; Komachi K; Herskowitz I
    Cell Regul; 1990 Apr; 1(5):391-401. PubMed ID: 2099190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae.
    Shuster EO; Byers B
    Genetics; 1989 Sep; 123(1):29-43. PubMed ID: 2680756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and analysis of the CEN1-ADE1-CDC15 region.
    Steensma HY; Crowley JC; Kaback DB
    Mol Cell Biol; 1987 Jan; 7(1):410-9. PubMed ID: 3031471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and characterization of the CDC24 gene and adjacent regions of the chromosome.
    Coleman KG; Steensma HY; Kaback DB; Pringle JR
    Mol Cell Biol; 1986 Dec; 6(12):4516-25. PubMed ID: 3540615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast.
    Laughon A; Gesteland RF
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6827-31. PubMed ID: 6294656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mapping of chromosomes in Saccharomyces cerevisiae. I. A cosmid vector designed to establish, by cloning into cdc-mutants, numerous start loci for chromosome walking in the yeast genome.
    Breter HJ; Knoop MT; Kirchen H
    Gene; 1987; 53(2-3):181-90. PubMed ID: 3301531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nucleotide sequences of the actin genes from Saccharomyces carlsbergensis and Saccharomyces cerevisiae are identical except for their introns.
    Nellen W; Donath C; Moos M; Gallwitz D
    J Mol Appl Genet; 1981; 1(3):239-44. PubMed ID: 6286825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of the actin gene from yeast Saccharomyces cerevisiae.
    Gallwitz D; Seidel R
    Nucleic Acids Res; 1980 Mar; 8(5):1043-59. PubMed ID: 7003553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of Saccharomyces cerevisiae CDC6 gene. Isolation, identification, and sequence analysis.
    Zhou C; Huang SH; Jong AY
    J Biol Chem; 1989 May; 264(15):9022-9. PubMed ID: 2656692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of the yeast fatty acid synthetase genes, FAS1 and FAS2: illustrating the structure of the FAS1 cluster gene by transcript mapping and transformation studies.
    Schweizer M; Lebert C; Höltke J; Roberts LM; Schweizer E
    Mol Gen Genet; 1984; 194(3):457-65. PubMed ID: 6330502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of the CDC7 gene of Saccharomyces cerevisiae in association with centromeric DNA.
    Meddle CC; Kumar P; Ham J; Hughes DA; Johnston IR
    Gene; 1985; 34(2-3):179-86. PubMed ID: 3891519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of the gene encoding phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Valdés-Hevia MD; de la Guerra R; Gancedo C
    FEBS Lett; 1989 Dec; 258(2):313-6. PubMed ID: 2689220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of the centromere-linked CDC10 gene by complementation in yeast.
    Clarke L; Carbon J
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2173-7. PubMed ID: 6990421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.