BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6346322)

  • 1. Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels.
    Stallings WC; Powers TB; Pattridge KA; Fee JA; Ludwig ML
    Proc Natl Acad Sci U S A; 1983 Jul; 80(13):3884-8. PubMed ID: 6346322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9-A resolution.
    Ringe D; Petsko GA; Yamakura F; Suzuki K; Ohmori D
    Proc Natl Acad Sci U S A; 1983 Jul; 80(13):3879-83. PubMed ID: 6575382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstroms resolution reveals novel dimer-dimer interactions.
    Cooper JB; McIntyre K; Badasso MO; Wood SP; Zhang Y; Garbe TR; Young D
    J Mol Biol; 1995 Mar; 246(4):531-44. PubMed ID: 7877174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 A resolution.
    Ludwig ML; Metzger AL; Pattridge KA; Stallings WC
    J Mol Biol; 1991 May; 219(2):335-58. PubMed ID: 2038060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutases.
    Hassan HM
    Ciba Found Symp; 1980; 79():125-42. PubMed ID: 6258885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme?
    Banci L; Benedetto M; Bertini I; Del Conte R; Piccioli M; Viezzoli MS
    Biochemistry; 1998 Aug; 37(34):11780-91. PubMed ID: 9718300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese and iron superoxide dismutases are structural homologs.
    Stallings WC; Pattridge KA; Strong RK; Ludwig ML
    J Biol Chem; 1984 Sep; 259(17):10695-9. PubMed ID: 6381489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling.
    Hamed MY; Al-Jabour S
    J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron superoxide dismutase. Nucleotide sequence of the gene from Escherichia coli K12 and correlations with crystal structures.
    Carlioz A; Ludwig ML; Stallings WC; Fee JA; Steinman HM; Touati D
    J Biol Chem; 1988 Jan; 263(3):1555-62. PubMed ID: 2447093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution.
    Parker MW; Blake CC
    J Mol Biol; 1988 Feb; 199(4):649-61. PubMed ID: 3351946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography.
    Pesce A; Capasso C; Battistoni A; Folcarelli S; Rotilio G; Desideri A; Bolognesi M
    J Mol Biol; 1997 Dec; 274(3):408-20. PubMed ID: 9405149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex.
    Betts L; Xiang S; Short SA; Wolfenden R; Carter CW
    J Mol Biol; 1994 Jan; 235(2):635-56. PubMed ID: 8289286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803.
    Chadd HE; Newman J; Mann NH; Carr NG
    FEMS Microbiol Lett; 1996 May; 138(2-3):161-5. PubMed ID: 9026442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B.
    Slykhouse TO; Fee JA
    J Biol Chem; 1976 Sep; 251(18):5472-7. PubMed ID: 184081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution.
    Walter MR; Cook WJ; Cole LB; Short SA; Koszalka GW; Krenitsky TA; Ealick SE
    J Biol Chem; 1990 Aug; 265(23):14016-22. PubMed ID: 2199449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy.
    Swain AL; Jaskólski M; Housset D; Rao JK; Wlodawer A
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1474-8. PubMed ID: 8434007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of an iron-dependent group III dehydrogenase that interconverts L-lactaldehyde and L-1,2-propanediol in Escherichia coli.
    Montella C; Bellsolell L; Pérez-Luque R; Badía J; Baldoma L; Coll M; Aguilar J
    J Bacteriol; 2005 Jul; 187(14):4957-66. PubMed ID: 15995211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase.
    Stasser JP; Siluvai GS; Barry AN; Blackburn NJ
    Biochemistry; 2007 Oct; 46(42):11845-56. PubMed ID: 17902702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution.
    Stallings WC; Pattridge KA; Strong RK; Ludwig ML
    J Biol Chem; 1985 Dec; 260(30):16424-32. PubMed ID: 4066716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of meso-diaminopimelic acid dehydrogenase from Corynebacterium glutamicum.
    Scapin G; Reddy SG; Blanchard JS
    Biochemistry; 1996 Oct; 35(42):13540-51. PubMed ID: 8885833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.