These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 6346896)
61. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Rafiq K; Fujisawa Y; Sherajee SJ; Rahman A; Sufiun A; Kobori H; Koepsell H; Mogi M; Horiuchi M; Nishiyama A Diabetologia; 2015 Dec; 58(12):2885-98. PubMed ID: 26450431 [TBL] [Abstract][Full Text] [Related]
62. Insulin Control of Blood Glucose and GLUT4 Expression in the Skeletal Muscle of Septic Rats. Lu GP; Cui P; Cheng Y; Lu ZJ; Zhang LE; Kissoon N West Indian Med J; 2015 Mar; 64(2):62-70. PubMed ID: 26360670 [TBL] [Abstract][Full Text] [Related]
63. The GLP-1 analogue exenatide improves hepatic and muscle insulin sensitivity in diabetic rats: tracer studies in the basal state and during hyperinsulinemic-euglycemic clamp. Wu H; Sui C; Xu H; Xia F; Zhai H; Zhang H; Weng P; Han B; Du S; Lu Y J Diabetes Res; 2014; 2014():524517. PubMed ID: 25580440 [TBL] [Abstract][Full Text] [Related]
64. Blockade of renin angiotensin system increased resistance to STZ-induced diabetes in rats with long-term high-fat diet. Li X; Yuan L; Li J; Li H; Cheng S Exp Diabetes Res; 2012; 2012():618923. PubMed ID: 23197974 [TBL] [Abstract][Full Text] [Related]
65. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Patel SA; Hoehn KL; Lawrence RT; Sawbridge L; Talbot NA; Tomsig JL; Turner N; Cooney GJ; Whitehead JP; Kraegen EW; Cleasby ME Endocrinology; 2012 Nov; 153(11):5231-46. PubMed ID: 22989629 [TBL] [Abstract][Full Text] [Related]
66. Effect of aging on islet beta-cell function and its mechanisms in Wistar rats. Gu Z; Du Y; Liu Y; Ma L; Li L; Gong Y; Tian H; Li C Age (Dordr); 2012 Dec; 34(6):1393-403. PubMed ID: 21898034 [TBL] [Abstract][Full Text] [Related]
67. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Potthoff MJ; Boney-Montoya J; Choi M; He T; Sunny NE; Satapati S; Suino-Powell K; Xu HE; Gerard RD; Finck BN; Burgess SC; Mangelsdorf DJ; Kliewer SA Cell Metab; 2011 Jun; 13(6):729-38. PubMed ID: 21641554 [TBL] [Abstract][Full Text] [Related]
68. The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signalling pathway. Cleasby ME; Lau Q; Polkinghorne E; Patel SA; Leslie SJ; Turner N; Cooney GJ; Xu A; Kraegen EW J Endocrinol; 2011 Jul; 210(1):81-92. PubMed ID: 21543456 [TBL] [Abstract][Full Text] [Related]
69. Goshajinkigan (Chinese herbal medicine niu-che-sen-qi-wan) improves insulin resistance in diabetic rats via the nitric oxide pathway. Hu X; Sato J; Bajotto G; Khookhor O; Ohsawa I; Oshida Y; Sato Y Nagoya J Med Sci; 2010 Feb; 72(1-2):35-42. PubMed ID: 20229701 [TBL] [Abstract][Full Text] [Related]
77. Imprinting of female offspring with testosterone results in insulin resistance and changes in body fat distribution at adult age in rats. Nilsson C; Niklasson M; Eriksson E; Björntorp P; Holmäng A J Clin Invest; 1998 Jan; 101(1):74-8. PubMed ID: 9421468 [TBL] [Abstract][Full Text] [Related]
78. The exchange between proglycogen and macroglycogen and the metabolic role of the protein-rich glycogen in rat skeletal muscle. Huang M; Lee C; Lin R; Chen R J Clin Invest; 1997 Feb; 99(3):501-5. PubMed ID: 9022084 [TBL] [Abstract][Full Text] [Related]
79. Laboratory chow-induced insulin resistance: a possible contributor to autoimmune type 1 diabetes in rodents. Storlien LH; Jenkins AB Diabetologia; 1996 May; 39(5):618-20. PubMed ID: 8739924 [No Abstract] [Full Text] [Related]
80. Skeletal muscle membrane lipids and insulin resistance. Storlien LH; Pan DA; Kriketos AD; O'Connor J; Caterson ID; Cooney GJ; Jenkins AB; Baur LA Lipids; 1996 Mar; 31 Suppl():S261-5. PubMed ID: 8729130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]