These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 6347038)

  • 21. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.
    Reinwarth M; Glotzbach B; Tomaszowski M; Fabritz S; Avrutina O; Kolmar H
    Chembiochem; 2013 Jan; 14(1):137-46. PubMed ID: 23229141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phi-values for BPTI folding intermediates and implications for transition state analysis.
    Bulaj G; Goldenberg DP
    Nat Struct Biol; 2001 Apr; 8(4):326-30. PubMed ID: 11276252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the stereochemical basis of enzyme action: lessons from lysozyme.
    Phillips DC
    Harvey Lect; 1971-1972; 66():135-60. PubMed ID: 4949243
    [No Abstract]   [Full Text] [Related]  

  • 24. Three-dimensional pattern recognition: an approach to automated interpretation of electron density maps of proteins.
    Greer J
    J Mol Biol; 1974 Jan; 82(3):279-301. PubMed ID: 4817788
    [No Abstract]   [Full Text] [Related]  

  • 25. Computer approaches to protein structure. 3. Transformation of atomic coordinates.
    Tometsko AM
    Comput Biomed Res; 1971 Aug; 4(4):407-16. PubMed ID: 5125351
    [No Abstract]   [Full Text] [Related]  

  • 26. Interferon: a tertiary structure predicted from amino acid sequences.
    Sternberg MJ; Cohen FE
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 299(1094):125-7. PubMed ID: 6183687
    [No Abstract]   [Full Text] [Related]  

  • 27. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution.
    Thomasen FE; Skaalum T; Kumar A; Srinivasan S; Vanni S; Lindorff-Larsen K
    Nat Commun; 2024 Aug; 15(1):6645. PubMed ID: 39103332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV-1-envelope trimer transitions from prefusion-closed to CD4-bound-open conformations through an occluded-intermediate state.
    Lee M; Lu M; Zhang B; Zhou T; Katte R; Han Y; Rawi R; Kwong PD
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Stochastic Landscape Approach for Protein Folding State Classification.
    Faran M; Ray D; Nag S; Raucci U; Parrinello M; Bisker G
    J Chem Theory Comput; 2024 Jul; 20(13):5428-5438. PubMed ID: 38924770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design.
    Harihar B; Saravanan KM; Gromiha MM; Selvaraj S
    Mol Biotechnol; 2024 Mar; ():. PubMed ID: 38498284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural studies of bacteriorhodopsin in BC era.
    Kataoka M
    Biophys Physicobiol; 2023 Mar; 20(Supplemental):e201006. PubMed ID: 38362329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Residue-based correlation between equilibrium and rate constants is an experimental formulation of the consistency principle for smooth structural changes of proteins.
    Kohda D; Hayashi S; Fujinami D
    Biophys Physicobiol; 2023; 20(4):e200046. PubMed ID: 38344030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate prediction of protein folding mechanisms by simple structure-based statistical mechanical models.
    Ooka K; Arai M
    Nat Commun; 2023 Oct; 14(1):6338. PubMed ID: 37857633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning to learn by using nonequilibrium training protocols for adaptable materials.
    Falk MJ; Wu J; Matthews A; Sachdeva V; Pashine N; Gardel ML; Nagel SR; Murugan A
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2219558120. PubMed ID: 37364104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Globular Proteins and Where to Find Them within a Polymer Brush-A Case Study.
    Galata AA; Kröger M
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rethinking the protein folding problem from a new perspective.
    Vila JA
    Eur Biophys J; 2023 Apr; 52(3):189-193. PubMed ID: 37165178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.
    Lu J; Scheerer D; Haran G; Li W; Wang W
    J Phys Chem B; 2022 Oct; 126(41):8188-8201. PubMed ID: 36222098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics.
    Ooka K; Liu R; Arai M
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations.
    Tan C; Jung J; Kobayashi C; Torre DU; Takada S; Sugita Y
    PLoS Comput Biol; 2022 Apr; 18(4):e1009578. PubMed ID: 35381009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical couplings of protein backbone and side chains exhibit scale-free network properties and specific hotspots for function.
    Raj N; Click T; Yang H; Chu JW
    Comput Struct Biotechnol J; 2021; 19():5309-5320. PubMed ID: 34765086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.