BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 6347188)

  • 1. The formation of dehydroalanine residues in alkali-treated insulin and oxidized glutathione. A nuclear-magnetic-resonance study.
    Jones AJ; Helmerhorst E; Stokes GB
    Biochem J; 1983 May; 211(2):499-502. PubMed ID: 6347188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative reactivities of sulfhydryl groups with N-acetyl dehydroalanine and N-acetyl dehydroalanine methyl ester.
    Snow JT; Finley JW; Friedman M
    Int J Pept Protein Res; 1976; 8(1):57-64. PubMed ID: 1248927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione conjugation of busulfan produces a hydroxyl radical-trapping dehydroalanine metabolite.
    Peer CJ; Younis IR; Leonard SS; Gannett PM; Minarchick VC; Kenyon AJ; Rojanasakul Y; Callery PS
    Xenobiotica; 2012 Dec; 42(12):1170-7. PubMed ID: 22725664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of protein disulphide bonds in dilute alkali.
    Florence TM
    Biochem J; 1980 Sep; 189(3):507-20. PubMed ID: 7213343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of dehydroalanine derivatives under hydrazinolysis conditions. Possible relevance to glycoprotein hydrazinolysis.
    Suzen S; Williams M
    J Pept Sci; 1999 Jun; 5(6):283-6. PubMed ID: 10463783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and enzymatic synthesis of fluorinated-dehydroalanine-containing peptides.
    Zhou H; Schmidt DM; Gerlt JA; van der Donk WA
    Chembiochem; 2003 Nov; 4(11):1206-15. PubMed ID: 14613113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Formation of dehydroalanine, lanthionine and lysinoalanine during heat treatment of beta-lactoglobuline A (author's transl)].
    Watanabe K; Klostermeyer H
    Z Lebensm Unters Forsch; 1977 Jun; 164(2):77-9. PubMed ID: 18859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE REACTION AND ASSAY OF GLUTATHIONE WITH HG2+ AND ALKALI.
    KAPOOR RC; DOUGHTY G; GORIN G
    Biochim Biophys Acta; 1965 May; 100():376-83. PubMed ID: 14347934
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of alkali on proteins. Disulfides and their products.
    Nashef AS; Osuga DT; Lee HS; Ahmed AI; Whitaker JR; Feeney RE
    J Agric Food Chem; 1977; 25(2):245-51. PubMed ID: 838959
    [No Abstract]   [Full Text] [Related]  

  • 10. Involvement of dehydroalanine and dehydrobutyrine in the addition of glutathione to nisin.
    Rose NL; Sporns P; Dodd HM; Gasson MJ; Mellon FA; McMullen LM
    J Agric Food Chem; 2003 May; 51(10):3174-8. PubMed ID: 12720411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation and cleavage of lysinoalanine crosslinks.
    Ebert G; Ebert C
    Adv Exp Med Biol; 1977; 86B():197-204. PubMed ID: 20745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic and conformational studies on dehydroalanine-containing model peptides.
    Gupta A; Chauhan VS
    Biopolymers; 1990; 30(3-4):395-403. PubMed ID: 2279071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of dehydroalanine fragments as thiostrepton side chain mimetics.
    Ayida BK; Simonsen KB; Vourloumis D; Hermann T
    Bioorg Med Chem Lett; 2005 May; 15(10):2457-60. PubMed ID: 15863296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the presence of a disulfide linkage in peptides by the selective elimination of hydrogen disulfide from collisionally activated alkali and alkaline earth metal complexes.
    Kim HI; Beauchamp JL
    J Am Chem Soc; 2008 Jan; 130(4):1245-57. PubMed ID: 18181621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a dehydroalanine-containing peptide as an efficient inhibitor of tripeptidyl peptidase II.
    Tomkinson B; Grehn L; Fransson B; Zetterqvist O
    Arch Biochem Biophys; 1994 Nov; 314(2):276-9. PubMed ID: 7979365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The trans labilization of cis-[PtCl2(13CH3NH2)2] by glutathione can be monitored at physiological pH by [1H,13C] HSQC NMR.
    Gibson D; Kasherman Y; Kowarski D; Freikman I
    J Biol Inorg Chem; 2006 Mar; 11(2):179-88. PubMed ID: 16341898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formaldehyde adducts of glutathione. Structure elucidation by two-dimensional n.m.r. spectroscopy and fast-atom-bombardment tandem mass spectrometry.
    Naylor S; Mason RP; Sanders JK; Williams DH; Moneti G
    Biochem J; 1988 Jan; 249(2):573-9. PubMed ID: 3342029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H n.m.r. studies of insulin. Assignment of resonances and properties of tyrosine residues.
    Bradbury JH; Ramesh V
    Biochem J; 1985 Aug; 229(3):731-7. PubMed ID: 3902004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the displacement of methylthio groups by glutathione.
    Huwe JK; Feil VJ; Bakke JE; Mulford DJ
    Xenobiotica; 1991 Feb; 21(2):179-91. PubMed ID: 2058174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent interaction of dehydroretronecine, a carcinogenic metabolite of the pyrrolizidine alkaloid monocrotaline, with cysteine and glutathione.
    Robertson KA; Seymour JL; Hsia MT; Allen JR
    Cancer Res; 1977 Sep; 37(9):3141-4. PubMed ID: 884667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.