These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 634791)
1. 360 MHz PMR studies on the involvement of the Y-nucleoside in the conformation of 2'-OMeGpApApYpAppsi from torula yeast tRNAphe. Dea P; Alta M; Patt S; Schweizer MP Nucleic Acids Res; 1978 Feb; 5(2):307-15. PubMed ID: 634791 [TBL] [Abstract][Full Text] [Related]
2. 300 MHz PMR studies on the conformation of the hexanucleotide, 2'OMeGpApApUpApPsi, from the anticodon loop of torula yeast tRNAphe. Kreishman GP; Miller JP; Dea P; Hussain Z; Wilson LA; Schweizer MP Biochem Biophys Res Commun; 1974 May; 58(1):27-34. PubMed ID: 4831072 [No Abstract] [Full Text] [Related]
3. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic conversion of guanosine 3' adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. Droogmans L; Grosjean H EMBO J; 1987 Feb; 6(2):477-83. PubMed ID: 3556165 [TBL] [Abstract][Full Text] [Related]
5. Reaction of tRNAPhe from yeast with 1-fluoro-2,4-dinitrobenzene. Attachment sites of the potential antigenic-determining 2,4-dinitrophenyl residues. Watanabe K; Cramer F Eur J Biochem; 1978 Sep; 89(2):425-32. PubMed ID: 81773 [TBL] [Abstract][Full Text] [Related]
6. Proton magnetic resonance studies on the conformation of the hexanucleotide, GmpApApYpApsiP, and Related fragments from the anticodong loop of baker's yeast phenylalanine transfer ribonucleic acid. Kan LS; Ts'o PO; von der Haar F; Sprinzl M; Cramer F Biochemistry; 1975 Jul; 14(14):3278-91. PubMed ID: 1096939 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon. Geerdes HA; Van Boom JH; Hilbers CW J Mol Biol; 1980 Sep; 142(2):195-217. PubMed ID: 6160254 [No Abstract] [Full Text] [Related]
9. Structure of the ribotrinucleoside diphosphate codon UpUpC bound to tRNAPhe from yeast. A time-dependent transferred nuclear Overhauser enhancement study. Clore GM; Gronenborn AM; McLaughlin LW J Mol Biol; 1984 Mar; 174(1):163-73. PubMed ID: 6371248 [TBL] [Abstract][Full Text] [Related]
10. Conformational analysis of a modified ribotetranucleoside triphosphate: m6(2)A-U-m6(2)A-U studied in aqueous solution by nuclear magnetic resonance at 500 MHz. Hartel AJ; Wille-Hazeleger G; van Boom JH; Altona C Nucleic Acids Res; 1981 Mar; 9(6):1405-23. PubMed ID: 6785726 [TBL] [Abstract][Full Text] [Related]
11. Nuclear overhauser studies of CCGGAp, ACCGGp, and ACCGGUp. Petersheim M; Turner DH Biochemistry; 1983 Jan; 22(2):264-8. PubMed ID: 6824630 [TBL] [Abstract][Full Text] [Related]
12. Preparation of oligonucleotides corresponding to the acceptor stem of yeast tRNAPhe and their interaction with yeast ATP(CTP):tRNA nucleotidyltransferase. Wang GH; McLaughlin LW; Sternbach H; Cramer F Nucleic Acids Res; 1984 Sep; 12(17):6909-22. PubMed ID: 6384932 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of codon recognition by transfer RNA studied with oligonucleotides larger than triplets. Labuda D; Striker G; Grosjean H; Porschke D Nucleic Acids Res; 1985 May; 13(10):3667-83. PubMed ID: 4011439 [TBL] [Abstract][Full Text] [Related]
14. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268 [TBL] [Abstract][Full Text] [Related]
15. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution. Römer R; Varadi V Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858 [TBL] [Abstract][Full Text] [Related]
17. Effects of dilute HCl on yeast tRNAPhe and E. coli tRNA1fMet. Ladner JE; Schweizer MP Nucleic Acids Res; 1974 Feb; 1(2):183-92. PubMed ID: 4606505 [TBL] [Abstract][Full Text] [Related]
18. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance. Hurd RE; Reid BR Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042 [TBL] [Abstract][Full Text] [Related]
19. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe. Johnston PD; Redfield AG Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239 [TBL] [Abstract][Full Text] [Related]
20. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Kasai H; Oashi Z; Harada F; Nishimura S; Oppenheimer NJ; Crain PF; Liehr JG; von Minden DL; McCloskey JA Biochemistry; 1975 Sep; 14(19):4198-208. PubMed ID: 1101947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]