These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 6348906)
21. Imidacloprid in melon guttation fluid: a potential mode of exposure for pest and beneficial organisms. Hoffmann EJ; Castle SJ J Econ Entomol; 2012 Feb; 105(1):67-71. PubMed ID: 22420257 [TBL] [Abstract][Full Text] [Related]
22. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. Ponlawat A; Scott JG; Harrington LC J Med Entomol; 2005 Sep; 42(5):821-5. PubMed ID: 16363166 [TBL] [Abstract][Full Text] [Related]
23. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. Rodríguez MM; Bisset J; Ruiz M; Soca A J Med Entomol; 2002 Nov; 39(6):882-8. PubMed ID: 12495187 [TBL] [Abstract][Full Text] [Related]
24. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. Govindarajan M; Rajeswary M; Muthukumaran U; Hoti SL; Khater HF; Benelli G J Photochem Photobiol B; 2016 Aug; 161():482-9. PubMed ID: 27318605 [TBL] [Abstract][Full Text] [Related]
25. [Study of the effect of antibiotics of the streptothricin group on blood-sucking mosquitoes. II. The effect of phytobacteriomycin on Anopheles, Aedes and Culex mosquitoes]. Chagin KP; Gol'berg AM; Ganushkina LA Med Parazitol (Mosk); 1975; 44(5):580-5. PubMed ID: 1219355 [No Abstract] [Full Text] [Related]
26. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus. Sathantriphop S; Achee NL; Sanguanpong U; Chareonviriyaphap T J Vector Ecol; 2015 Dec; 40(2):318-26. PubMed ID: 26611967 [TBL] [Abstract][Full Text] [Related]
27. A comparative assessment of cytotoxicity of commonly used agricultural insecticides to human and insect cells. Yun X; Huang Q; Rao W; Xiao C; Zhang T; Mao Z; Wan Z Ecotoxicol Environ Saf; 2017 Mar; 137():179-185. PubMed ID: 27940132 [TBL] [Abstract][Full Text] [Related]
28. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. Darriet F; Corbel V J Med Entomol; 2006 Nov; 43(6):1190-4. PubMed ID: 17162952 [TBL] [Abstract][Full Text] [Related]
29. LD 50 values of methyl parathion and endrin to tobacco budworms and bollworms collected in the Americas and hypothesis on the spread of resistance in these lepidopterans to these insecticides. Wolfenbarger DA; Lukefahr MJ; Graham HM J Econ Entomol; 1973 Feb; 66(1):211-6. PubMed ID: 4690271 [No Abstract] [Full Text] [Related]
30. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. Casida JE J Agric Food Chem; 1970; 18(5):753-72. PubMed ID: 4919838 [No Abstract] [Full Text] [Related]
31. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Ravi Kiran S; Bhavani K; Sita Devi P; Rajeswara Rao BR; Janardhan Reddy K Bioresour Technol; 2006 Dec; 97(18):2481-4. PubMed ID: 16815011 [TBL] [Abstract][Full Text] [Related]
32. [Field trials of some organophosphorous compounds in the control of blood--sucking diptera]. Krivtsova EN Med Parazitol (Mosk); 1970; 39(1):53-9. PubMed ID: 5482473 [No Abstract] [Full Text] [Related]
33. Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action. Pridgeon JW; Pereira RM; Becnel JJ; Allan SA; Clark GG; Linthicum KJ J Med Entomol; 2008 Jan; 45(1):82-7. PubMed ID: 18283946 [TBL] [Abstract][Full Text] [Related]
34. Gossypol: antagonistic effect on toxicity of insecticides to Spodoptera littoralis. Abou-Donia MB; Taman F; Bakery NM; El-Sabae AH Experientia; 1974 Oct; 30(10):1151-2. PubMed ID: 4435119 [No Abstract] [Full Text] [Related]
36. Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Patil SV; Patil CD; Salunkhe RB; Salunke BK Trop Biomed; 2010 Dec; 27(3):360-5. PubMed ID: 21399575 [TBL] [Abstract][Full Text] [Related]
37. Larvicidal potential of Ali SI; Gopalakrishnan B; Venkatesalu V Nat Prod Res; 2019 May; 33(10):1463-1466. PubMed ID: 29251995 [TBL] [Abstract][Full Text] [Related]
38. Cross-tolerance of California Aedes nigromaculis (Ludlow) larvae to EPN, Abate, and Dursban. Gillies PA; Womeldorf DJ; White KE Proc Pap Annu Conf Calif Mosq Control Assoc; 1968 Oct; 36():85. PubMed ID: 5730067 [No Abstract] [Full Text] [Related]
39. Interpretation of resistance in California Aedes nigromaculis larvae. Gillies PA; Womeldorf DJ; White KE Proc Pap Annu Conf Calif Mosq Control Assoc; 1968 Oct; 36():79-81. PubMed ID: 5730064 [No Abstract] [Full Text] [Related]
40. Role of esterases in resistance of insects to insecticides. Devonshire AL Biochem Soc Trans; 1991 Aug; 19(3):755-9. PubMed ID: 1783210 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]