BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6349630)

  • 1. Partial melting of the segment around pseudouridine in yeast 5S RNA.
    Nagamatsu K; Miyazawa Y
    Biochem Biophys Res Commun; 1983 Jul; 114(1):81-7. PubMed ID: 6349630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational study of low molecular weight RNAs in solution by fluorescent probe.
    Nagamatsu K; Suzuki K; Miyazawa Y
    Nucleic Acids Symp Ser; 1984; (15):139-42. PubMed ID: 6395094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and Mg2+ dependent behavior of pseudouridines at 39th and 55th of yeast tRNAPhe.
    Nagamatsu K; Miyazawa Y
    Nucleic Acids Symp Ser; 1983; (12):133-6. PubMed ID: 6664847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting of local ordered structures in yeast 5S ribosomal RNA in aqueous salts.
    Ohta S; Maruyama S; Nitta K; Sugai S
    Nucleic Acids Res; 1983 May; 11(10):3363-73. PubMed ID: 6344010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the nucleotide sequence of pseudouridine-containing 5S RNA from Saccharomyces cerevisiae.
    Miyazaki M
    J Biochem; 1974 Jun; 75(6):1407-10. PubMed ID: 4609984
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of base pairing in ribonucleic acid by Fourier-transform infrared spectrometry: yeast ribosomal 5S ribonucleic acid.
    Burkey KO; Marshall AG; Alben JO
    Biochemistry; 1983 Aug; 22(18):4223-9. PubMed ID: 6354249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear Overhauser effect study of yeast tRNAVal 1: evidence for uridine-pseudouridine base pairing.
    Schejter E; Roy S; Sánchez V; Redfield AG
    Nucleic Acids Res; 1982 Dec; 10(24):8297-305. PubMed ID: 6761651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and kinetics of the thermal unfolding of yeast 5S ribosomal RNA.
    Maruyama S; Tatsuki T; Sugai S
    J Biochem; 1979 Nov; 86(5):1487-94. PubMed ID: 391809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on ribosomal ribonucleic acid from yeast. II. Specific complex of yeast ribosomal RNA.
    Yanagi K; Iso K
    J Biochem; 1974 Jul; 76(1):73-9. PubMed ID: 4215805
    [No Abstract]   [Full Text] [Related]  

  • 10. Pseudouridine distribution in mammalian 18 S ribosomal RNA. A major cluster in the central region of the molecule.
    Maden EH; Wakeman JA
    Biochem J; 1988 Jan; 249(2):459-64. PubMed ID: 3342024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Procedure for C2 deuteration of nucleic acids and determination of A psi 31 pseudouridine conformation by nuclear Overhauser effect in yeast tRNAPhe.
    Roy S; Papastavros MZ; Redfield AG
    Nucleic Acids Res; 1982 Dec; 10(24):8341-9. PubMed ID: 6761652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting of Saccharomyces cerevisiae 5S ribonucleic acid: ultraviolet absorption, circular dichroism, and 360-MHz proton nuclear magnetic resonance spectroscopy.
    Luoma GA; Burns PD; Bruce RE; Marshall AG
    Biochemistry; 1980 Nov; 19(23):5456-62. PubMed ID: 7004487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical properties of the E. coli 4.5S RNA: first results suggest a hairpin helix of unusual thermal stability.
    Bourgaize DB; Farrell C; Langley KH; Fournier MJ
    Nucleic Acids Res; 1984 Feb; 12(4):2019-34. PubMed ID: 6366742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal post-transcriptional modification of yeast mitochondrial ribosomal RNA.
    Klootwijk J; Klein I; Grivell LA
    J Mol Biol; 1975 Sep; 97(3):337-50. PubMed ID: 1102710
    [No Abstract]   [Full Text] [Related]  

  • 16. The pseudouridine contents of the ribosomal ribonucleic acids of three vertebrate species. Numerical correspondence between pseudouridine residues and 2'-O-methyl groups is not always conserved.
    Hughes DG; Maden BE
    Biochem J; 1978 Jun; 171(3):781-6. PubMed ID: 666737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of degradation rates of transfer and ribosomal ribonucleic acids in cultured rat hepatocytes by measuring N6-threoninocarbonyladenosine, dihydrouridine, and pseudouridine in medium using high-performance liquid chromatography.
    Topp H; Dörrenhaus A; Bolt H; Schöch G; Föllmann W
    Anal Biochem; 1997 Dec; 254(2):200-7. PubMed ID: 9417777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistage unfolding of wheat germ ribosomal 5S RNA analyzed by differential scanning calorimetry.
    Li SJ; Marshall AG
    Biochemistry; 1985 Jul; 24(15):4047-52. PubMed ID: 4052382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensitive and radiolabeling-free method for pseudouridine detection.
    Li W; Wang F; Chen Y; Weng X; Zhou X
    Anal Biochem; 2019 Sep; 581():113350. PubMed ID: 31255565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudouridylation of yeast ribosomal precursor RNA.
    Brand RC; Klootwijk J; Sibum CP; Planta RJ
    Nucleic Acids Res; 1979 Sep; 7(1):121-34. PubMed ID: 114983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.