These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6350201)

  • 1. Modification of arginine residues in subtilisins Novo and Carlsberg. Effect on the protein structure and enzymatic activity.
    Genov N; Idakieva K
    Int J Pept Protein Res; 1983 May; 21(5):536-40. PubMed ID: 6350201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of subtilisin types Novo and Carlsberg by circular polarization of fluorescence.
    Schlessinger J; Roche RS; Steinberg IZ
    Biochemistry; 1975 Jan; 14(2):255-62. PubMed ID: 235273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical, photochemical and spectroscopic characterization of an alkaline proteinase from Bacillus subtilis variant DY.
    Genov N; Shopova M; Boteva R; Jori G; Ricchelli F
    Biochem J; 1982 Nov; 207(2):193-200. PubMed ID: 6818945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreactivity of histidyl residues in subtilisins Novo and DY. Photooxidation of subtilisins.
    Genov N; Idakieva K
    Int J Pept Protein Res; 1987 Mar; 29(3):368-73. PubMed ID: 3298095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism and fluorescence of polyethylene glycol-subtilisin in organic solvents.
    Pasta P; Riva S; Carrea G
    FEBS Lett; 1988 Aug; 236(2):329-32. PubMed ID: 3044827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroism and gel filtration behavior of subtilisin enzymes in concentrated solutions of guanidine hydrochloride.
    Brown MF; Schleich T
    Biochemistry; 1975 Jul; 14(14):3069-74. PubMed ID: 238582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide.
    Brown MF; Omar S; Raubach RA; Schleich T
    Biochemistry; 1977 Mar; 16(5):987-92. PubMed ID: 843526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution of independently titrating spectral components in the ultraviolet circular dichroism of subtilisin enzymes by matrix rank analysis.
    Brown MF; Schleich T
    Biochim Biophys Acta; 1977 Nov; 485(1):37-51. PubMed ID: 20969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence decay of tryptophans in serine proteinases from microorganisms: relation to X-ray models.
    Genov N; Nikolov P; Betzel C; Wilson K
    Adv Exp Med Biol; 1996; 379():141-5. PubMed ID: 8796318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular distances between tryptophan residues and the active-site serine residue in alkaline bacterial proteinases as measured by fluorescence energy-transfer studies.
    Genov NC; Shopova M; Boteva R; Ricchelli F; Jori G
    Biochem J; 1983 Nov; 215(2):413-6. PubMed ID: 6418143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg.
    Eschenburg S; Genov N; Peters K; Fittkau S; Stoeva S; Wilson KS; Betzel C
    Eur J Biochem; 1998 Oct; 257(2):309-18. PubMed ID: 9826175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo.
    McPhalen CA; James MN
    Biochemistry; 1988 Aug; 27(17):6582-98. PubMed ID: 3064813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal and molecular structure of the inhibitor eglin from leeches in complex with subtilisin Carlsberg.
    McPhalen CA; Schnebli HP; James MN
    FEBS Lett; 1985 Aug; 188(1):55-8. PubMed ID: 3926539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant subtilisins.
    Bogacheva AM
    Biochemistry (Mosc); 1999 Mar; 64(3):287-93. PubMed ID: 10205297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg.
    Mugford PF; Lait SM; Keay BA; Kazlauskas RJ
    Chembiochem; 2004 Jul; 5(7):980-7. PubMed ID: 15239056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry.
    Bode W; Papamokos E; Musil D
    Eur J Biochem; 1987 Aug; 166(3):673-92. PubMed ID: 3301348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive alkylation of lysine residues in subtilisin DY.
    Lilova A; Kleinschmidt T; Nedkov P
    Biol Chem Hoppe Seyler; 1987 Nov; 368(11):1479-87. PubMed ID: 3124865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine residue accessibility in native subtilisin DY.
    Lilova A; Kleinschmidt T; Nedkov P
    Biol Chem Hoppe Seyler; 1987 May; 368(5):513-9. PubMed ID: 3304336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Primary structure of subtilisin DY].
    Nedkov P; Oberthür W; Braunitzer G
    Hoppe Seylers Z Physiol Chem; 1983 Nov; 364(11):1537-40. PubMed ID: 6420308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between accessibility and reactivity of Lys, Met and Tyr in subtilisins DY and Carlsberg.
    Nedkov P; Spassov V; Tzokov S
    Biol Chem; 1996 Oct; 377(10):653-9. PubMed ID: 8922594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.