These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 6350201)
61. Proton magnetic resonance studies of the states of ionization of histidines in native and modified subtilisins. Jordan F; Polgar L; Tous G Biochemistry; 1985 Dec; 24(26):7711-7. PubMed ID: 3912007 [TBL] [Abstract][Full Text] [Related]
62. Folding of subtilisin BPN': role of the pro-sequence. Eder J; Rheinnecker M; Fersht AR J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204 [TBL] [Abstract][Full Text] [Related]
63. Specific fluorescent derivatives of macromolecules. A fluorescence study of some specifically modified derivatives of chymotrypsin, trypsin and subtilisin. Vaz WL; Schoellmann G Biochim Biophys Acta; 1976 Jul; 439(1):206-18. PubMed ID: 952953 [TBL] [Abstract][Full Text] [Related]
64. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Shanmugasundaram T; Kumar GK; Shenoy BC; Wood HG Biochemistry; 1989 Aug; 28(17):7112-6. PubMed ID: 2819052 [TBL] [Abstract][Full Text] [Related]
65. PROPERTIES OF A BLOCKED TETRAPEPTIDE ANALOGUE OF THE ACTIVE SITE OF SUBTILISIN. BERNHARD S; GRDINIC Z; NOLLER H; SHALTIEL N Proc Natl Acad Sci U S A; 1964 Dec; 52(6):1489-94. PubMed ID: 14243523 [No Abstract] [Full Text] [Related]
66. Preparation of fluorescence-labeled and cross-linked subtilisin. Tanizawa K; Mano T; Kanaoka Y Chem Pharm Bull (Tokyo); 1990 Feb; 38(2):464-6. PubMed ID: 2186877 [TBL] [Abstract][Full Text] [Related]
67. Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Kannan Y; Koga Y; Inoue Y; Haruki M; Takagi M; Imanaka T; Morikawa M; Kanaya S Appl Environ Microbiol; 2001 Jun; 67(6):2445-52. PubMed ID: 11375149 [TBL] [Abstract][Full Text] [Related]
68. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase. Powers SG; Riordan JF Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076 [TBL] [Abstract][Full Text] [Related]
69. Reengineering of subtilisin Carlsberg for oxidative resistance. Vojcic L; Despotovic D; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U Biol Chem; 2013 Jan; 394(1):79-87. PubMed ID: 23096572 [TBL] [Abstract][Full Text] [Related]
70. Binding of m-nitrobenzeneboronic acid to the active site of subtilisin BPN. Nakatani H; Hiromi K Biochim Biophys Acta; 1978 Jun; 524(2):413-7. PubMed ID: 27223 [TBL] [Abstract][Full Text] [Related]
71. A study of the unfolding of the inhibited subtilisin in guanidine hydrochloride. Contaxis CC; McBride-Warren PA; Epand RM Int J Pept Protein Res; 1975; 7(2):135-42. PubMed ID: 237844 [TBL] [Abstract][Full Text] [Related]
72. Preparation and enzymatic properties of subtilisin Novo chemically attached to soluble DEAE-dextran and insoluble DEAE-sephadex. Svensson B Biochim Biophys Acta; 1976 May; 429(3):954-63. PubMed ID: 5148 [TBL] [Abstract][Full Text] [Related]
73. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157 [TBL] [Abstract][Full Text] [Related]
74. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme. Schülein R; Kreft J; Gonski S; Goebel W Mol Gen Genet; 1991 May; 227(1):137-43. PubMed ID: 1904534 [TBL] [Abstract][Full Text] [Related]
76. Photochemical evidence for the presence of histidyl residue in the active site of alkaline mesentericopeptidase. Shopova M; Genov N Int J Pept Protein Res; 1977 Nov; 10(5):369-74. PubMed ID: 24017 [TBL] [Abstract][Full Text] [Related]
77. Factors limiting the hydrolysis of casein by subtilisin DY. Nedkov P; Lilova A; Tchorbanov B Biol Chem Hoppe Seyler; 1987 Oct; 368(10):1321-5. PubMed ID: 3322321 [TBL] [Abstract][Full Text] [Related]
78. Effect of amino acid residue and oligosaccharide chain chemical modifications on spectral and hemagglutinating activity of Millettia dielsiana Harms. ex Diels. lectin. Gao S; An J; Wu CF; Gu Y; Chen F; Yu Y; Wu QQ; Bao JK Acta Biochim Biophys Sin (Shanghai); 2005 Jan; 37(1):47-54. PubMed ID: 15645081 [TBL] [Abstract][Full Text] [Related]
79. Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im+H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants. Plou FJ; Kowlessur D; Malthouse JP; Mellor GW; Hartshorn MJ; Pinitglang S; Patel H; Topham CM; Thomas EW; Verma C; Brocklehurst K J Mol Biol; 1996 Apr; 257(5):1088-111. PubMed ID: 8632470 [TBL] [Abstract][Full Text] [Related]
80. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Almog O; Kogan A; Leeuw Md; Gdalevsky GY; Cohen-Luria R; Parola AH Biopolymers; 2008 May; 89(5):354-9. PubMed ID: 17937401 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]