BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 6351054)

  • 1. 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae.
    Ogino T; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5185-9. PubMed ID: 6351054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 23Na and 39K NMR studies of ion transport in human erythrocytes.
    Ogino T; Shulman GI; Avison MJ; Gullans SR; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1099-103. PubMed ID: 2579385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium transport and phosphorus metabolism in sodium-loaded yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo.
    Höfeler H; Jensen D; Pike MM; Delayre JL; Cirillo VP; Springer CS; Fossel ET; Balschi JA
    Biochemistry; 1987 Aug; 26(16):4953-62. PubMed ID: 3311159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 23Na NMR studies of rat outer medullary kidney tubules.
    Rayson BM; Gupta RK
    J Biol Chem; 1985 Jun; 260(12):7276-80. PubMed ID: 2987250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock- and ethanol-induced ionic changes in C6 rat glioma cells determined by NMR and fluorescence spectroscopy.
    Skrandies S; Bremer B; Pilatus U; Mayer A; Neuhaus-Steinmetz U; Rensing L
    Brain Res; 1997 Jan; 746(1-2):220-30. PubMed ID: 9037501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of ion transport in perfused rat heart: 133Cs+ as an NMR active K+ analog.
    Schornack PA; Song SK; Ling CS; Hotchkiss R; Ackerman JJ
    Am J Physiol; 1997 May; 272(5 Pt 1):C1618-34. PubMed ID: 9176154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance.
    Castle AM; Macnab RM; Shulman RG
    J Biol Chem; 1986 Mar; 261(7):3288-94. PubMed ID: 3512550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on single-quantum- and triple-quantum-filtered 23Na and 31P nuclear magnetic resonance of the subcutaneously implanted 9L glioma.
    Winter PM; Poptani H; Bansal N
    Cancer Res; 2001 Mar; 61(5):2002-7. PubMed ID: 11280759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of intracellular pH in the regulation of cation exchanges in yeast.
    Ryan JP; Ryan H
    Biochem J; 1972 Jun; 128(1):139-46. PubMed ID: 4563763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of cation influxes and effluxes in yeast.
    Rothstein A
    J Gen Physiol; 1974 Nov; 64(5):608-21. PubMed ID: 4613800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation exchanges of yeast in the absence of magnesium.
    Rodríguez-Navarro A; Sancho ED
    Biochim Biophys Acta; 1979 Apr; 552(2):322-30. PubMed ID: 36142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts. Discrimination of intra- and extracellular ions using a shift reagent.
    Pike MM; Frazer JC; Dedrick DF; Ingwall JS; Allen PD; Springer CS; Smith TW
    Biophys J; 1985 Jul; 48(1):159-73. PubMed ID: 4016206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic phosphates in Na(+)-K+ balance in KCN-poisoned rat heart: a 87Rb-, 23Na-, and 31P-NMR study.
    Kupriyanov VV; Yang L; Deslauriers R
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1303-11. PubMed ID: 8967370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct high-resolution nuclear magnetic resonance studies of cation transport in vivo, Na+ transport in yeast cells.
    Balschi JA; Cirillo VP; Springer CS
    Biophys J; 1982 Jun; 38(3):323-6. PubMed ID: 7049258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 87Rb, 23Na and 31P nuclear magnetic resonance spectroscopy of the perfused rat kidney.
    Allis JL; Endre ZH; Radda GK
    Ren Physiol Biochem; 1989; 12(3):171-80. PubMed ID: 2560232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 23Na NMR study of intracellular sodium ions in Dictyostelium discoideum amoeba.
    Martin JB; Klein G; Satre M
    Arch Biochem Biophys; 1987 May; 254(2):559-67. PubMed ID: 3579318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of sodium influx and improved preservation of rat hearts during hypothermic ischemia by furosemide and bumetanide: a 23Na- and 31P-NMR study.
    Rubin Y; Navon G
    J Mol Cell Cardiol; 1993 Dec; 25(12):1403-11. PubMed ID: 8158660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate-dependent sodium transport in S. faecalis investigated by 23Na and 31P NMR.
    Rabaste F; Dauphin G; Jeminet G; Guyot J; Delort AM
    Biochem Biophys Res Commun; 1991 Nov; 181(1):74-9. PubMed ID: 1958221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae.
    Ballarin-Denti A; Den Hollander JA; Sanders D; Slayman CW; Slayman CL
    Biochim Biophys Acta; 1984 Nov; 778(1):1-16. PubMed ID: 6093875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.