These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6351312)

  • 1. Role of oxygen free radicals in shock, ischemia, and organ preservation.
    Parks DA; Bulkley GB; Granger DN
    Surgery; 1983 Sep; 94(3):428-32. PubMed ID: 6351312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-derived free radicals in postischemic tissue injury.
    McCord JM
    N Engl J Med; 1985 Jan; 312(3):159-63. PubMed ID: 2981404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-derived free radical damage in organ preservation: activity of superoxide dismutase and xanthine oxidase.
    Southard JH; Marsh DC; McAnulty JF; Belzer FO
    Surgery; 1987 May; 101(5):566-70. PubMed ID: 3576449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathophysiology of ischemic skin flaps: differences in xanthine oxidase levels among rats, pigs, and humans.
    Picard-Ami LA; MacKay A; Kerrigan CL
    Plast Reconstr Surg; 1991 Apr; 87(4):750-5. PubMed ID: 2008472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cellular injury: potential sources of oxygen free radicals in ischemia/reperfusion.
    Inauen W; Suzuki M; Granger DN
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):143-55. PubMed ID: 2700373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ischemia-reperfusion injury: role of oxygen-derived free radicals.
    Granger DN; Höllwarth ME; Parks DA
    Acta Physiol Scand Suppl; 1986; 548():47-63. PubMed ID: 3529822
    [No Abstract]   [Full Text] [Related]  

  • 7. Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals.
    Parks DA; Granger DN
    Am J Physiol; 1983 Aug; 245(2):G285-9. PubMed ID: 6309018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-free radicals (OFR) and circulatory shock.
    Haglund U; Gerdin B
    Circ Shock; 1991 Aug; 34(4):405-11. PubMed ID: 1773483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms of reperfusion injury of rat kidney].
    Okajima S
    Hokkaido Igaku Zasshi; 1990 May; 65(3):277-84. PubMed ID: 2379911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat.
    DeLano FA; Parks DA; Ruedi JM; Babior BM; Schmid-Schönbein GW
    Microcirculation; 2006; 13(7):551-66. PubMed ID: 16990214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of oxygen-derived free radicals in digestive tract diseases.
    Parks DA; Bulkley GB; Granger DN
    Surgery; 1983 Sep; 94(3):415-22. PubMed ID: 6351311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved survival in free skin flap transfers in rats.
    Manson PN; Narayan KK; Im MJ; Bulkley GB; Hoopes JE
    Surgery; 1986 Feb; 99(2):211-5. PubMed ID: 3511561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of xanthine oxidase in thermal injury of skin.
    Till GO; Guilds LS; Mahrougui M; Friedl HP; Trentz O; Ward PA
    Am J Pathol; 1989 Jul; 135(1):195-202. PubMed ID: 2549794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical mediated damage in skeletal muscle.
    Lindsay T; Romaschin A; Walker PM
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):157-70. PubMed ID: 2700374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ischemia-induced reperfusion injury in muscle flaps: pathogenesis and major source of free radicals.
    Pang CY
    J Reconstr Microsurg; 1990 Jan; 6(1):77-83. PubMed ID: 2407843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the xanthine dehydrogenase/xanthine oxidase ratio in the rat kidney subjected to ischemia-reperfusion stress: preventive effect of some flavonoids.
    Sanhueza J; Valdes J; Campos R; Garrido A; Valenzuela A
    Res Commun Chem Pathol Pharmacol; 1992 Nov; 78(2):211-8. PubMed ID: 1475527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of O2-derived free radical injury to organ preservation and transplantation.
    Southard JH; Marsh DC; McAnulty JF; Belzer FO
    Transplant Proc; 1987 Feb; 19(1 Pt 2):1380-1. PubMed ID: 3274335
    [No Abstract]   [Full Text] [Related]  

  • 18. Importance of oxygen free radicals during ischemia and reperfusion in the experimental and clinical setting. Oxygen free radicals and the heart.
    Ferrari R
    Am J Cardiovasc Pathol; 1992; 4(2):103-14. PubMed ID: 1524795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effect of superoxide dismutase and allopurinol on oxygen free radical-induced damage to the kidney.
    Lee PH; Chung YC; Hu RH; Huang MT; Lee CS
    Transplant Proc; 1992 Aug; 24(4):1353-4. PubMed ID: 1496586
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of xanthine oxidase and the effects of antioxidants in ischemia reperfusion cell injury.
    Cañas PE
    Acta Physiol Pharmacol Ther Latinoam; 1999; 49(1):13-20. PubMed ID: 10797836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.