BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6351907)

  • 1. Nonspecific interaction of the lac repressor headpiece with deoxyribonucleic acid: fluorescence and circular dichroism studies.
    Schnarr M; Durand M; Maurizot JC
    Biochemistry; 1983 Jul; 22(15):3563-70. PubMed ID: 6351907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between the lac operator and the lac repressor headpiece: fluorescence and circular dichroism studies.
    Culard F; Schnarr M; Maurizot JC
    EMBO J; 1982; 1(11):1405-9. PubMed ID: 6765196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The LexA repressor and its isolated amino-terminal domain interact cooperatively with poly[d(A-T)], a contiguous pseudo-operator, but not with random DNA: a circular dichroism study.
    Hurstel S; Granger-Schnarr M; Schnarr M
    Biochemistry; 1990 Feb; 29(7):1961-70. PubMed ID: 2184894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of lac repressor headpiece to poly[d(A-T)]. A thermal denaturation study.
    Durand M; Schnarr M; Maurizot JC
    Biochem Biophys Res Commun; 1983 Jan; 110(1):169-75. PubMed ID: 6340664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-CIDNP study of the interaction between lac repressor headpiece and lac operator DNA.
    Stob S; Scheek RM; Boelens R; Kaptein R
    FEBS Lett; 1988 Oct; 239(1):99-104. PubMed ID: 3053247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the complex between lac repressor headpiece and operator DNA from measurements of the orientation relaxation and the electric dichroism.
    Pörschke D; Geisler N; Hillen W
    Nucleic Acids Res; 1982 Jun; 10(12):3791-802. PubMed ID: 7050912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of the lac repressor headpiece against thermal denaturation and tryptic hydrolysis.
    Schnarr M; Maurizot JC
    Biochim Biophys Acta; 1982 Apr; 702(2):155-62. PubMed ID: 7044423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding of lac repressor and its proteolytic fragment by urea: headpieces stabilize the core within lac repressor.
    Schnarr M; Maurizot JC
    Biochemistry; 1981 Oct; 20(21):6164-9. PubMed ID: 7030384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative and salt-resistant binding of lexA protein to non-operator DNA.
    Schnarr M; Daune M
    FEBS Lett; 1984 Jun; 171(2):207-10. PubMed ID: 6723984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions.
    Winter RB; Berg OG; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6961-77. PubMed ID: 7032584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lac repressor and its N-terminal headpiece can bind a mini-operator containing a hairpin loop made of a hexaethylene glycol chain.
    Maurizot JC; Chevrie K; Durand M; Thuong NT
    FEBS Lett; 1991 Aug; 288(1-2):101-4. PubMed ID: 1879541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of the asymmetrical contact between lac repressor and lac operator DNA.
    Rastinejad F; Artz P; Lu P
    J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of lac repressor with alternating poly d (A-T) and poly d (G-C). Circular dichroism studies.
    Durand M; Maurizot JC
    Biochimie; 1980; 62(7):503-7. PubMed ID: 6996747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. lac repressor-lac operator interaction: NMR observations.
    Nick H; Arndt K; Boschelli F; Jarema MA; Lillis M; Sadler J; Caruthers M; Lu P
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):218-22. PubMed ID: 7043455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stoichiometry of lac repressor binding to nonspecific DNA: three different complexes form.
    Lawson RC; York SS
    Biochemistry; 1987 Jul; 26(15):4867-75. PubMed ID: 3311156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure of the lac repressor headpiece. Possibilities and limitations of a joint infrared and circular dichroism study.
    Schnarr M; Maurizot JC
    Eur J Biochem; 1982 Nov; 128(2-3):515-20. PubMed ID: 6759121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino-terminal fragments of Escherichia coli lac repressor bind to DNA.
    Jovin TM; Geisler N; Weber K
    Nature; 1977 Oct; 269(5630):668-72. PubMed ID: 339099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lac repressor - lac operator interaction. Circular dichroism study.
    Culard F; Maurizot JC
    Nucleic Acids Res; 1981 Oct; 9(19):5175-84. PubMed ID: 6273795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity.
    Overman LB; Bujalowski W; Lohman TM
    Biochemistry; 1988 Jan; 27(1):456-71. PubMed ID: 3280021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution nuclear magnetic resonance studies of the Lac repressor. 3. Unfolding of the Lac repressor headpiece.
    Wemmer D; Ribeiro AA; Bray RP; Wade-Jardetzky NG; Jardetzky O
    Biochemistry; 1981 Feb; 20(4):829-33. PubMed ID: 7213616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.