These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6352054)

  • 41. Homologous in vitro transcription of linear DNA fragments containing the tRNAArg-tRNAAsp gene pair from Saccharomyces cerevisiae.
    Kjellin-Straby K; Engelke DR; Abelson J
    DNA; 1984; 3(2):167-71. PubMed ID: 6373202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcription of eukaryotic tRNA genes in vitro. I. Analysis of control regions using a competition assay.
    Sharp S; Dingermann T; Schaack J; DeFranco D; Söll D
    J Biol Chem; 1983 Feb; 258(4):2440-6. PubMed ID: 6549757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleotide sequence of a yeast tRNAArg3A gene and its transcription in a homologous in vitro system.
    Villanueva J; Bull P; Valenzuela P; Venegas A
    FEBS Lett; 1984 Feb; 167(1):165-9. PubMed ID: 6321234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of the yeast tRNA Ser genomic organization and DNA sequence.
    Page GS; Hall BD
    Nucleic Acids Res; 1981 Feb; 9(4):921-34. PubMed ID: 7015287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of mutant tRNA gene transcripts in vivo in Saccharomyces cerevisiae by abortive primer extension.
    Wilhelm ML; Wilhelm FX; Ebel JP
    Anal Biochem; 1991 Jul; 196(1):156-60. PubMed ID: 1888029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correlations between transcription of a yeast tRNA gene and transcription factor-DNA interactions.
    Stillman DJ; Sivertsen AL; Zentner PG; Geiduschek EP
    J Biol Chem; 1984 Jun; 259(12):7955-62. PubMed ID: 6234307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly(U)-dependent polyphenylalanine and polytyrosine synthesis in vitro by a tRNATyr variant with an enzymatically altered anticodon, G-A-A.
    Nishikawa K; Uritani M; Miyazaki M; Takemura S
    Nucleic Acids Symp Ser; 1984; (15):125-8. PubMed ID: 6570012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcription and processing of intervening sequences in yeast tRNA genes.
    Knapp G; Beckmann JS; Johnson PF; Fuhrman SA; Abelson J
    Cell; 1978 Jun; 14(2):221-36. PubMed ID: 352537
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of transcription and processing from plasmids that use polIII and a yeast tRNA gene as promoter to transcribe promoter-deficient downstream DNA.
    Otter CA; Edqvist J; Stråby KB
    Biochim Biophys Acta; 1992 May; 1131(1):62-8. PubMed ID: 1581361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The 5'-flanking sequences of Drosophila melanogaster tRNA5Asn genes differentially arrest RNA polymerase III.
    Lofquist A; Sharp S
    J Biol Chem; 1986 Nov; 261(31):14600-6. PubMed ID: 3095322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions.
    Dingermann T; Sharp S; Schaack J; Söll D
    J Biol Chem; 1983 Sep; 258(17):10395-402. PubMed ID: 6309803
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The 5'-flanking sequence of yeast tRNA(Leu3) genes enhances the rate of transcription from stable pre-initiation complexes.
    Raymond GJ; Johnson JD
    Nucleic Acids Res; 1987 Dec; 15(23):9881-94. PubMed ID: 3320957
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yeast ochre suppressor SUQ5-ol is an altered tRNA Ser UCA.
    Waldron C; Cox BS; Wills N; Gesteland RF; Piper PW; Colby D; Guthrie C
    Nucleic Acids Res; 1981 Jul; 9(13):3077-88. PubMed ID: 7024909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pleiotropic effect of a point mutation in the yeast SUP4-o tRNA gene: in vivo pre-tRNA processing in S. cerevisiae.
    Wilhelm ML; Keith G; Fix C; Wilhelm FX
    Nucleic Acids Res; 1992 Feb; 20(4):791-6. PubMed ID: 1542574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mutation in the a block of the yeast tRNAleu3 gene that allows transcription but abolishes splicing and 5'-end maturation.
    Mattoccia E; Baldi MI; Pande G; Ogden R; Tocchini-Valentini GP
    Cell; 1983 Jan; 32(1):67-76. PubMed ID: 6337723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The contacts of yeast tRNA(Ser) with seryl-tRNA synthetase studied by footprinting experiments.
    Dock-Bregeon AC; Garcia A; Giegé R; Moras D
    Eur J Biochem; 1990 Mar; 188(2):283-90. PubMed ID: 2180700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro mutagenesis of the yeast SUP4-o gene to identify all substitutions that can be detected in vivo with the SUP4-o system.
    Kohalmi L; Kunz BA
    Environ Mol Mutagen; 1992; 19(4):282-7. PubMed ID: 1600954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequence of a yeast DNA fragment containing a chromosomal replicator and a tRNA Glu 3 gene.
    Feldmann H; Olah J; Friedenreich H
    Nucleic Acids Res; 1981 Jun; 9(12):2949-59. PubMed ID: 6269065
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and processing of yeast precursor tRNAs containing intervening sequences.
    O'Farrell PZ; Cordell B; Valenzuela P; Rutter WJ; Goodman HM
    Nature; 1978 Aug; 274(5670):438-45. PubMed ID: 353564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.