These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6352335)

  • 1. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes.
    Belitsina NV; Klyachko EV; Shakulov RS
    FEBS Lett; 1983 Oct; 162(1):39-42. PubMed ID: 6352335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of guanosine polyphosphates (pppGpp and ppGpp) and its regulation by aminoacyl-tRNA.
    Ogawa Y; Sy J
    J Biochem; 1977 Oct; 82(4):947-53. PubMed ID: 336616
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis of pppGpp by ribosomes from an Escherichia coli spoT mutant and the metabolic relationship between pppGpp and ppGpp.
    Leung KL; Yamazaki H
    Can J Biochem; 1977 Dec; 55(12):1207-12. PubMed ID: 340016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M; Erdmann VA
    FEBS Lett; 1977 Nov; 83(1):125-7. PubMed ID: 336399
    [No Abstract]   [Full Text] [Related]  

  • 5. Eukaryotic ribosomal proteins stimulate Escherichia coli stringent factor to synthesize guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate, 3'-diphosphate (ppGpp).
    Martini O; Richter D
    Mol Gen Genet; 1978 Nov; 166(3):291-7. PubMed ID: 216901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination between purine and pyrimidine base at the 3' terminus of the tRNA molecule by the stringent factor system from Escherichia coli.
    Richter D
    Biochem Biophys Res Commun; 1978 Mar; 81(2):359-65. PubMed ID: 352346
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis of guanosine tetra- and pentaphosphates by the obligately anaerobic bacterium Bacteroides thetaiotaomicron in response to molecular oxygen.
    Glass TL; Holmes WM; Hylemon PB; Stellwag EJ
    J Bacteriol; 1979 Feb; 137(2):956-62. PubMed ID: 422517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the aminoacyl end of transfer RNA in the allosteric control of guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of Escherichia coli.
    Chinali G; Liou R; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2761-8. PubMed ID: 356874
    [No Abstract]   [Full Text] [Related]  

  • 9. The temperature sensitive mutant 72c. II. Accumulation at high temperature of ppGpp and pppGpp in the presence of protein synthesis.
    Takata R; Isaksson LA
    Mol Gen Genet; 1978 Apr; 161(1):15-21. PubMed ID: 353496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes.
    Haseltine WA; Block R
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1564-8. PubMed ID: 4576025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylgroups of ribosomal protein L11 are not related to the synthesis of ppGpp.
    Röhl R; Nierhaus KH
    Mol Gen Genet; 1979 Feb; 170(2):187-9. PubMed ID: 372761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation.
    Dix DB; Thompson RC
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2027-31. PubMed ID: 3515344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases.
    Fehr S; Richter D
    J Bacteriol; 1981 Jan; 145(1):68-73. PubMed ID: 6161916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate.
    Chinali G; Horowitz J; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis.
    Rojas AM; Ehrenberg M; Andersson SG; Kurland CG
    Mol Gen Genet; 1984; 197(1):36-45. PubMed ID: 6392824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic suppression of translational errors by (p)ppGpp.
    Wagner EG; Ehrenberg M; Kurland CG
    Mol Gen Genet; 1982; 185(2):269-74. PubMed ID: 7045583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli.
    Ofengand J; Liou R
    Nucleic Acids Res; 1978 Apr; 5(4):1325-34. PubMed ID: 349503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Questioning of reported evidence for guanosine tetraphosphate synthesis in a ribosome system from mouse embryos.
    Martini O; Irr J; Richter D
    Cell; 1977 Dec; 12(4):1127-31. PubMed ID: 340046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanosine polyphosphate production of Escherichia coli stringent and relaxed strains in the stationary phase of growth.
    Kramer M; Kecskés E ; Horváth I
    Acta Microbiol Acad Sci Hung; 1981; 28(2):165-70. PubMed ID: 7020351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does ppGpp affect translational accuracy in the stringent response?
    Rojas AM; Ehrenberg M
    Biochimie; 1991 May; 73(5):599-605. PubMed ID: 1722424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.