These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6352678)

  • 1. Temperature-sensitive Saccharomyces cerevisiae mutant defective in lipid biosynthesis.
    Letts VA; Dawes IW
    J Bacteriol; 1983 Oct; 156(1):212-21. PubMed ID: 6352678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Saccharomyces cerevisiae mutant strain defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle.
    Al-Feel W; DeMar JC; Wakil SJ
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3095-100. PubMed ID: 12626751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of a temperature-sensitive mutant of Saccharomyces cerevisiae defective in phosphofructokinase activity.
    Banerjee S; Getz GS; Garg M
    J Bacteriol; 1984 Apr; 158(1):94-101. PubMed ID: 6232262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma membrane expansion terminates in Saccharomyces cerevisiae secretion-defective mutants while phospholipid synthesis continues.
    Ramirez RM; Ishida-Schick T; Krilowicz BL; Leish BA; Atkinson KD
    J Bacteriol; 1983 Jun; 154(3):1276-83. PubMed ID: 6343347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in
    Dacquay L; Flint A; Butcher J; Salem D; Kennedy M; Kaern M; Stintzi A; Baetz K
    G3 (Bethesda); 2017 Jun; 7(6):1799-1809. PubMed ID: 28455416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae.
    Athenstaedt K; Daum G
    J Bacteriol; 1997 Dec; 179(24):7611-6. PubMed ID: 9401016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae mutant with a partial defect in the synthesis of CDP-diacylglycerol and altered regulation of phospholipid biosynthesis.
    Klig LS; Homann MJ; Kohlwein SD; Kelley MJ; Henry SA; Carman GM
    J Bacteriol; 1988 Apr; 170(4):1878-86. PubMed ID: 2832385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pleiotropic effects of the opi1 regulatory mutation of yeast: its effects on growth and on phospholipid and inositol metabolism.
    Jiranek V; Graves JA; Henry SA
    Microbiology (Reading); 1998 Oct; 144 ( Pt 10)():2739-2748. PubMed ID: 9802015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gpi1, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis.
    Leidich SD; Orlean P
    J Biol Chem; 1996 Nov; 271(44):27829-37. PubMed ID: 8910381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cytoskeleton-related gene, uso1, is required for intracellular protein transport in Saccharomyces cerevisiae.
    Nakajima H; Hirata A; Ogawa Y; Yonehara T; Yoda K; Yamasaki M
    J Cell Biol; 1991 Apr; 113(2):245-60. PubMed ID: 2010462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies employing Saccharomyces cerevisiae cpt1 and ept1 null mutants implicate the CPT1 gene in coordinate regulation of phospholipid biosynthesis.
    Morash SC; McMaster CR; Hjelmstad RH; Bell RM
    J Biol Chem; 1994 Nov; 269(46):28769-76. PubMed ID: 7961831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases.
    Robinson JS; Klionsky DJ; Banta LM; Emr SD
    Mol Cell Biol; 1988 Nov; 8(11):4936-48. PubMed ID: 3062374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hypo-osmolarity-sensitive phenotype of the Saccharomyces cerevisiae hpo2 mutant is due to a mutation in PKC1, which regulates expression of beta-glucanase.
    Shimizu J; Yoda K; Yamasaki M
    Mol Gen Genet; 1994 Mar; 242(6):641-8. PubMed ID: 8152414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid synthesis in inositol-starved Saccharomyces cerevisiae.
    McCammon MT; Parks LW
    Biochim Biophys Acta; 1982 Oct; 713(1):86-93. PubMed ID: 6753941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic analysis of the Opi- phenotype.
    Hancock LC; Behta RP; Lopes JM
    Genetics; 2006 Jun; 173(2):621-34. PubMed ID: 16582425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway.
    Novick P; Field C; Schekman R
    Cell; 1980 Aug; 21(1):205-15. PubMed ID: 6996832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and sequence of the SCS3 gene which is required for inositol prototrophy in Saccharomyces cerevisiae.
    Hosaka K; Nikawa J; Kodaki T; Ishizu H; Yamashita S
    J Biochem; 1994 Dec; 116(6):1317-21. PubMed ID: 7706223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of inositol biosynthesis in Saccharomyces cerevisiae; inositol-phosphate synthetase mutants.
    Culbertson MR; Donahue TF; Henry SA
    J Bacteriol; 1976 Apr; 126(1):243-50. PubMed ID: 177396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A yeast strain defective in oleic acid utilization has a mutation in the RML2 gene.
    Trotter PJ; Hagerman RA; Voelker DR
    Biochim Biophys Acta; 1999 May; 1438(2):223-38. PubMed ID: 10320805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae.
    Athenstaedt K; Weys S; Paltauf F; Daum G
    J Bacteriol; 1999 Mar; 181(5):1458-63. PubMed ID: 10049376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.