BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6352699)

  • 1. Methylenetetrahydrofolate reductase. Steady state and rapid reaction studies on the NADPH-methylenetetrahydrofolate, NADPH-menadione, and methyltetrahydrofolate-menadione oxidoreductase activities of the enzyme.
    Vanoni MA; Ballou DP; Matthews RG
    J Biol Chem; 1983 Oct; 258(19):11510-4. PubMed ID: 6352699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylenetetrahydrofolate reductase from Escherichia coli: elucidation of the kinetic mechanism by steady-state and rapid-reaction studies.
    Trimmer EE; Ballou DP; Matthews RG
    Biochemistry; 2001 May; 40(21):6205-15. PubMed ID: 11371181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effects on the oxidation of reduced nicotinamide adenine dinucleotide phosphate by the flavoprotein methylenetetrahydrofolate reductase.
    Vanoni MA; Matthews RG
    Biochemistry; 1984 Oct; 23(22):5272-9. PubMed ID: 6391540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase.
    Matthews RG; Kaufman S
    J Biol Chem; 1980 Jul; 255(13):6014-7. PubMed ID: 6967065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Menadione reductase from Clostridium tyrobutyricum.
    Petitdemange H; Marczak R; Raval G; Gay R
    Can J Microbiol; 1980 Mar; 26(3):324-9. PubMed ID: 7407710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of methylenetetrahydrofolate reductase activity by S-adenosylmethionine and by dihydrofolate and its polyglutamate analogues.
    Matthews RG; Daubner SC
    Adv Enzyme Regul; 1982; 20():123-31. PubMed ID: 7051769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.
    Trimmer EE; Ballou DP; Ludwig ML; Matthews RG
    Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum.
    Clark JE; Ljungdahl LG
    J Biol Chem; 1984 Sep; 259(17):10845-9. PubMed ID: 6381490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of NADH-dependent 5, 10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli.
    Sheppard CA; Trimmer EE; Matthews RG
    J Bacteriol; 1999 Feb; 181(3):718-25. PubMed ID: 9922232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of methylenetetrahydrofolate reductase from human cadaver liver.
    Zhou J; Kang SS; Wong PW; Fournier B; Rozen R
    Biochem Med Metab Biol; 1990 Jun; 43(3):234-42. PubMed ID: 2383427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative analysis of cytosolic and solubilized mitochondrial menadione reductases from rat liver].
    Titovets EP
    Biokhimiia; 1979 Jul; 44(7):1155-9. PubMed ID: 497267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radioenzymatic assay for reductive catalysis of N(5)N(10)-methylenetetrahydrofolate by methylenetetrahydrofolate reductase.
    Sobti P; Rothenberg SP; Quadros EV
    J Biochem Biophys Methods; 2000 Nov; 46(1-2):11-20. PubMed ID: 11086190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of methylenetetrahydrofolate reductase from pig liver.
    Daubner SC; Matthews RG
    J Biol Chem; 1982 Jan; 257(1):140-5. PubMed ID: 6975779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Properties and reaction mechanism of mitochondrial menadione reductase].
    Titovets EP; Petrovskiĭ GG
    Biokhimiia; 1976 Aug; 41(8):1522-30. PubMed ID: 1024599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H; Sies H
    Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are the redox properties of tetrahydrofolate cofactors utilized in folate-dependent reactions?
    Matthews RG
    Fed Proc; 1982 Jul; 41(9):2600-4. PubMed ID: 7044835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin analogs as mechanistic probes of adrenodoxin reductase-dependent electron transfer to the cholesterol side chain cleavage cytochrome P-450 of the adrenal cortex.
    Light DR; Walsh C
    J Biol Chem; 1980 May; 255(9):4264-77. PubMed ID: 6246117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.