These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6353198)

  • 1. Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins?
    Bougis P; Tessier M; Van Rietschoten J; Rochat H; Faucon JF; Dufourcq J
    Mol Cell Biochem; 1983; 55(1):49-64. PubMed ID: 6353198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Mechanism by which Cobra Venom Cardiotoxins Interact with the Outer Mitochondrial Membrane.
    Li F; Shrivastava IH; Hanlon P; Dagda RK; Gasanoff ES
    Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32605112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity.
    Kini RM; Evans HJ
    Biochemistry; 1989 Nov; 28(23):9209-15. PubMed ID: 2513886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation and structure-function studies of Taiwan cobra cardiotoxins.
    Lin SR; Chang LS; Chang KL
    J Protein Chem; 2002 Feb; 21(2):81-6. PubMed ID: 11934278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the toxic site of Naja mossambica cardiotoxins: small synthetic peptides express an in vivo lethality.
    Marchot P; Bougis PE; Ceard B; Van Rietschoten J; Rochat H
    Biochem Biophys Res Commun; 1988 Jun; 153(2):642-7. PubMed ID: 3382394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo synergy of cardiotoxin and phospholipase A2 from the elapid snake Naja mossambica mossambica.
    Bougis PE; Marchot P; Rochat H
    Toxicon; 1987; 25(4):427-31. PubMed ID: 3617080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions.
    Chien KY; Chiang CM; Hseu YC; Vyas AA; Rule GS; Wu W
    J Biol Chem; 1994 May; 269(20):14473-83. PubMed ID: 8182052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and pharmacological properties of cardiotoxins isolated from cobra venom.
    Hider RC; Khader F
    Toxicon; 1982; 20(1):175-9. PubMed ID: 7080031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations.
    Gorai B; Sivaraman T
    Int J Biol Macromol; 2017 Feb; 95():1022-1036. PubMed ID: 27984143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures.
    Zusman N; Cafmeyer N; Hudson RA
    Toxicon; 1982; 20(2):517-20. PubMed ID: 7080058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships for cardiotoxins interacting with phospholipids.
    Dufourcq J; Faucon JF; Bernard E; Pezolet M; Tessier M; van Rietschoten J; Delori P; Rochat H
    Toxicon; 1982; 20(1):165-74. PubMed ID: 7080030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of some 3-nitrotyrosyl elapid venom cardiotoxins.
    Carlsson FH; Louw AI
    Int J Biochem; 1987; 19(1):9-16. PubMed ID: 3569641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible orientation change of cardiotoxin molecule during its interaction with phospholipid monolayer.
    Bougis P; Rochat H; Piéroni G; Verger R
    Toxicon; 1982; 20(1):187-90. PubMed ID: 7080032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of substrate inhibition of synaptosomal acetylcholinesterase by cardiotoxins.
    Ranaei-Siadat SO; Riazi GH; Sadeghi M; Chang LS; Lin SR; Eghtesadi-Araghi P; Hakimelahi GH; Moosavi-Movahedi AA
    J Biochem Mol Biol; 2004 May; 37(3):330-8. PubMed ID: 15469715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop.
    Dubovskii PV; Ignatova AA; Alekseeva AS; Starkov VG; Boldyrev IA; Feofanov AV; Utkin YN
    Toxins (Basel); 2022 Dec; 15(1):. PubMed ID: 36668826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Penetration of phospholipid monolayers by cardiotoxins.
    Bougis P; Rochat H; Piéroni G; Verger R
    Biochemistry; 1981 Aug; 20(17):4915-20. PubMed ID: 7295658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle.
    Harvey AL; Hider RC; Khader F
    Biochim Biophys Acta; 1983 Feb; 728(2):215-21. PubMed ID: 6830777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations.
    Harvey AL; Marshall RJ; Karlsson E
    Toxicon; 1982; 20(2):379-96. PubMed ID: 7080050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobra cardiotoxins: membrane interactions and pharmacological potential.
    Dubovskii PV; Konshina AG; Efremov RG
    Curr Med Chem; 2014; 21(3):270-87. PubMed ID: 24180277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding of snake venom cardiotoxins to heart cell membranes.
    Tönsing L; Potgieter DJ; Louw AI; Visser L
    Biochim Biophys Acta; 1983 Jul; 732(1):282-8. PubMed ID: 6871194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.