BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 6354080)

  • 1. Proteolytic systems in lactic acid bacteria.
    Law BA; Kolstad J
    Antonie Van Leeuwenhoek; 1983 Sep; 49(3):225-45. PubMed ID: 6354080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteolytic system of lactic acid bacteria.
    Mayo B
    Microbiologia; 1993 Dec; 9(2):90-106. PubMed ID: 8172695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing.
    Gobbetti M; Stepaniak L; De Angelis M; Corsetti A; Di Cagno R
    Crit Rev Food Sci Nutr; 2002; 42(3):223-39. PubMed ID: 12058981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic systems of lactic acid bacteria.
    Savijoki K; Ingmer H; Varmanen P
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):394-406. PubMed ID: 16628446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The microflora of sourdough. XIX. The effect of temperature and dough yield on the proteolytic effect of lactic acid bacteria in sourdough].
    Spicher G; Nierle W
    Z Lebensm Unters Forsch; 1984 Jul; 179(1):36-9. PubMed ID: 6385532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of bacterial proteins released in cheese: a proteomic approach.
    Gagnaire V; Piot M; Camier B; Vissers JP; Jan G; Léonil J
    Int J Food Microbiol; 2004 Jul; 94(2):185-201. PubMed ID: 15193805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biochemical characteristics of strains of lactic acid microorganisms used in cheese making].
    Matveeva EK; Krasheninin PF
    Prikl Biokhim Mikrobiol; 1973; 9(1):49-54. PubMed ID: 4633826
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of alpha-ketoglutaric acid on amino acid utilization by nonstarter Lactobacillus spp. isolated from Cheddar cheese.
    Williams AG; Noble J; Banks JM
    Lett Appl Microbiol; 2004; 38(4):289-95. PubMed ID: 15214727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.
    Arakawa K; Matsunaga K; Takihiro S; Moritoki A; Ryuto S; Kawai Y; Masuda T; Miyamoto T
    J Dairy Sci; 2015 Mar; 98(3):1593-603. PubMed ID: 25529420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidases and amino acid catabolism in lactic acid bacteria.
    Christensen JE; Dudley EG; Pederson JA; Steele JL
    Antonie Van Leeuwenhoek; 1999; 76(1-4):217-46. PubMed ID: 10532381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic peptides as substrate for assaying the proteolytic activity of Lactobacillus helveticus.
    Caira S; Ferranti P; Gatti M; Fornasari ME; Barone F; Lilla S; Mucchetti G; Picariello G; Chianese L; Neviani E; Addeo F
    J Dairy Res; 2003 Aug; 70(3):315-25. PubMed ID: 12916827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].
    Zhang S; Zhang L; Han X
    Wei Sheng Wu Xue Bao; 2015 Dec; 55(12):1530-6. PubMed ID: 27101694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria.
    Virtanen T; Pihlanto A; Akkanen S; Korhonen H
    J Appl Microbiol; 2007 Jan; 102(1):106-15. PubMed ID: 17184325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content.
    Pescuma M; Hébert EM; Mozzi F; Font de Valdez G
    Food Microbiol; 2008 May; 25(3):442-51. PubMed ID: 18355669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening.
    Jardin J; Mollé D; Piot M; Lortal S; Gagnaire V
    Int J Food Microbiol; 2012 Apr; 155(1-2):19-28. PubMed ID: 22305888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic System of
    Rodríguez-Serrano GM; García-Garibay M; Cruz-Guerrero AE; Gómez-Ruiz L; Ayala-Niño A; Castañeda-Ovando A; González-Olivares LG
    J Microbiol Biotechnol; 2018 Oct; 28(10):1581-1588. PubMed ID: 30196594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonstarter Lactobacillus strains as adjunct cultures for cheese making: in vitro characterization and performance in two model cheeses.
    Briggiler-Marcó M; Capra ML; Quiberoni A; Vinderola G; Reinheimer JA; Hynes E
    J Dairy Sci; 2007 Oct; 90(10):4532-42. PubMed ID: 17881674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analysis of amino acid biosynthesis and proteolysis in Lactobacillus delbrueckii subsp. bulgaricus 2038 and the implications for bovine milk fermentation.
    Zheng H; Liu E; Hao P; Konno T; Oda M; Ji ZS
    Biotechnol Lett; 2012 Aug; 34(8):1545-51. PubMed ID: 22782266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil.
    Tulini FL; Hymery N; Haertlé T; Le Blay G; De Martinis EC
    J Dairy Res; 2016 Feb; 83(1):115-24. PubMed ID: 26608755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.
    Gandhi A; Shah NP
    Int J Food Sci Nutr; 2014 Dec; 65(8):937-41. PubMed ID: 25095898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.