These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6354130)

  • 1. On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius.
    Giesel H; Simon H
    Arch Microbiol; 1983 Aug; 135(1):51-7. PubMed ID: 6354130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On nitroaryl reductase activities in several Clostridia.
    Angermaier L; Simon H
    Hoppe Seylers Z Physiol Chem; 1983 Dec; 364(12):1653-63. PubMed ID: 6321315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes.
    Mordaka PM; Hall SJ; Minton N; Stephens G
    Microbiology (Reading); 2018 Feb; 164(2):122-132. PubMed ID: 29111967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the kinetics and mechanism of enoate reductase.
    Bühler M; Simon H
    Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):609-25. PubMed ID: 7106707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reduction of allyl alcohols by Clostridium species is catalyzed by the combined action of alcohol dehydrogenase and enoate reductase.
    Bader J; Kim MA; Simon H
    Hoppe Seylers Z Physiol Chem; 1981 Jun; 362(6):809-20. PubMed ID: 7024092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral products from non-pyridine nucleotide-dependent reductases and methods for NAD(P)H regeneration.
    Simon H; Günther H; Bader J; Neumann S
    Ciba Found Symp; 1985; 111():97-111. PubMed ID: 3893942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductions of 2-enals, dehydrogenation of saturated aldehydes and their racemisation.
    Thanos I; Deffner A; Simon H
    Biol Chem Hoppe Seyler; 1988 Jun; 369(6):451-60. PubMed ID: 3202953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and applications of sensitive enzyme immunoassays specific for clostridial enoate reductases.
    Krause G; Simon H
    Z Naturforsch C J Biosci; 1989; 44(5-6):345-52. PubMed ID: 2669778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enoate reductases of Clostridia. Cloning, sequencing, and expression.
    Rohdich F; Wiese A; Feicht R; Simon H; Bacher A
    J Biol Chem; 2001 Feb; 276(8):5779-87. PubMed ID: 11060310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited.
    Britz ML; Wilkinson RG
    Can J Microbiol; 1982 Mar; 28(3):291-300. PubMed ID: 6805929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of enoate reductase from a Clostridium tyrobutyricum (C. spec. La1).
    Kuno S; Bacher A; Simon H
    Biol Chem Hoppe Seyler; 1985 May; 366(5):463-72. PubMed ID: 4005048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and peptostreptococcus anaerobius.
    Turton LJ; Drucker DB; Ganguli LA
    J Med Microbiol; 1983 Feb; 16(1):61-7. PubMed ID: 6822993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of alpha, beta-unsaturated carboxylate anions.
    Tischer W; Bader J; Simon H
    Eur J Biochem; 1979 Jun; 97(1):103-12. PubMed ID: 477658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activities of hydrogenase and enoate reductase in two Clostridium species, their interrelationship and dependence on growth conditions.
    Bader J; Simon H
    Arch Microbiol; 1980 Oct; 127(3):279-87. PubMed ID: 7004377
    [No Abstract]   [Full Text] [Related]  

  • 15. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.
    Kim J; Hetzel M; Boiangiu CD; Buckel W
    FEMS Microbiol Rev; 2004 Oct; 28(4):455-68. PubMed ID: 15374661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus.
    CARDON BP; BARKER HA
    Arch Biochem; 1947 Feb; 12(2):165-80. PubMed ID: 20283568
    [No Abstract]   [Full Text] [Related]  

  • 17. Genomic approach to studying nutritional requirements of Clostridium tyrobutyricum and other Clostridia causing late blowing defects.
    Storari M; Kulli S; Wüthrich D; Bruggmann R; Berthoud H; Arias-Roth E
    Food Microbiol; 2016 Oct; 59():213-23. PubMed ID: 27375262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoleucine synthesis by Clostridium sporogenes from propionate or alpha-methylbutyrate.
    Monticello DJ; Hadioetomo RS; Costilow RN
    J Gen Microbiol; 1984 Feb; 130(2):309-18. PubMed ID: 6726176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group.
    Petitdemange H; Cherrier C; Raval R; Gay R
    Biochim Biophys Acta; 1976 Feb; 421(2):334-7. PubMed ID: 3218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the formation of 3-phenylpropionate and the different stereo-chemical course of the reduction of cinnamate by Clostridium sporogenes and Peptostreptococcus anaerobius.
    Giesel H; Machacek G; Bayerl J; Simon H
    FEBS Lett; 1981 Jan; 123(1):107-10. PubMed ID: 7202724
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.