BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6354269)

  • 1. Hydration of Escherichia coli lipids. Deuterium T1 relaxation time studies of phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine.
    Borle F; Seelig J
    Biochim Biophys Acta; 1983 Oct; 735(1):131-6. PubMed ID: 6354269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of water at phosphatidylcholine lipid-bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR.
    Volke F; Eisenblätter S; Galle J; Klose G
    Chem Phys Lipids; 1994 Apr; 70(2):121-31. PubMed ID: 8033284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acyl chain dynamics of phosphatidylethanolamines containing oleic acid and dihydrosterculic acid: 2H NMR relaxation studies.
    Perly B; Smith IC; Jarrell HC
    Biochemistry; 1985 Aug; 24(17):4659-65. PubMed ID: 4063348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction between water and the polar head in inverted phosphatidylcholine micelles. A 2H and 31P relaxation study.
    Fung BM; McAdams JL
    Biochim Biophys Acta; 1976 Nov; 451(1):313-20. PubMed ID: 188457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of primary hydration shell of phosphatidylcholine bilayers at subzero temperatures.
    Hsieh CH; Wu WG
    Biophys J; 1996 Dec; 71(6):3278-87. PubMed ID: 8968597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the composition of membrane phospholipids during the cell cycle of Escherichia coli.
    Mozharov AD; Shchipakin VN; Fishov IL; Evtodienko YuV
    FEBS Lett; 1985 Jul; 186(1):103-6. PubMed ID: 3891405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration properties and structure of phosphatidylcholine membranes in the presence of n-nonyl bromide.
    BalgavĂ˝ P; Gawrisch K
    Gen Physiol Biophys; 1986 Aug; 5(4):365-70. PubMed ID: 3770457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of the phosphatidylcholine and the phosphatidylethanolamine head group in L-M fibroblasts as studied by deuterium nuclear magnetic resonance.
    Scherer PG; Seelig J
    EMBO J; 1987 Oct; 6(10):2915-22. PubMed ID: 3691475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Escherichia coli membranes. Glycerol auxotrophs as a tool for the analysis of the phospholipid head-group region by deuterium magentic resonance.
    Gally HU; Pluschke G; Overath P; Seelig J
    Biochemistry; 1981 Mar; 20(7):1826-31. PubMed ID: 7013803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degraded and stable phosphatidylglycerol in Escherichia coli inner and outer membranes, and recycling of fatty acyl residues.
    Joseleau-Petit D; Kepes A
    Biochim Biophys Acta; 1982 Apr; 711(1):1-9. PubMed ID: 7039685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A NMR investigation on the interactions of the alpha-oligomeric form of the M13 coat protein with lipids, which mimic the Escherichia coli inner membrane.
    Sanders JC; Poile TW; Spruijt RB; Van Nuland NA; Watts A; Hemminga MA
    Biochim Biophys Acta; 1991 Jul; 1066(1):102-8. PubMed ID: 2065065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR.
    Ulrich AS; Watts A
    Biophys J; 1994 May; 66(5):1441-9. PubMed ID: 8061193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of the phosphatidyl moiety of phosphatidylglycerol to phosphatidylethanolamine in Escherichia coli.
    Yokota K; Kito M
    J Bacteriol; 1982 Aug; 151(2):952-61. PubMed ID: 6807966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane lipids of Mycoplasma gallisepticum: a disaturated phosphatidylcholine and a phosphatidylglycerol with an unusual positional distribution of fatty acids.
    Rottem S; Markowitz O
    Biochemistry; 1979 Jul; 18(14):2930-5. PubMed ID: 465448
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.
    Zhou Z; Sayer BG; Hughes DW; Stark RE; Epand RM
    Biophys J; 1999 Jan; 76(1 Pt 1):387-99. PubMed ID: 9876150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the composition of mixed lipid phases by the moments of 2H NMR spectra.
    Jarrell HC; Byrd RA; Smith IC
    Biophys J; 1981 Jun; 34(3):451-63. PubMed ID: 7018609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.
    Urbina JA; Moreno B; Arnold W; Taron CH; Orlean P; Oldfield E
    Biophys J; 1998 Sep; 75(3):1372-83. PubMed ID: 9726938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies of amino acids and proteins. Deuterium nuclear magnetic resonance relaxation of deuteriomethyl-labeled amino acids in crystals and in Halobacterium halobium and Escherichia coli cell membranes.
    Keniry MA; Kintanar A; Smith RL; Gutowsky HS; Oldfield E
    Biochemistry; 1984 Jan; 23(2):288-98. PubMed ID: 6365162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2H-NMR study on the glycerol backbone of phospholipids extracted from Escherichia coli grown under high osmotic pressure: evidence for multiconformations of phosphatidylethanolamine.
    Yoshikawa W; Akutsu H; Kyogoku Y; Akamatsu Y
    Biochim Biophys Acta; 1988 Oct; 944(3):321-8. PubMed ID: 3052589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anesthetic-membrane interaction: a 2H nuclear magnetic resonance study of the binding of specifically deuterated tetracaine and procaine to phosphatidylcholine.
    Kelusky EC; Smith IC
    Can J Biochem Cell Biol; 1984 Apr; 62(4):178-84. PubMed ID: 6722635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.