BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6355452)

  • 1. Regulation of ribosomal RNA transcription during differentiation of Acanthamoeba castellanii: a review.
    Paule MR
    J Protozool; 1983 May; 30(2):211-4. PubMed ID: 6355452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evidence that eukaryotic ribosomal RNA transcription is regulated by modification of RNA polymerase I.
    Paule MR; Iida CT; Perna PJ; Harris GH; Knoll DA; D'Alessio JM
    Nucleic Acids Res; 1984 Nov; 12(21):8161-80. PubMed ID: 6095193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faithful initiation of ribosomal RNA transcription from cloned DNA by purified RNA polymerase I.
    Paule MR; Iida CT; Perna PJ; Harris GH; Brown Shimer SL; Kownin P
    Biochemistry; 1984 Aug; 23(18):4167-72. PubMed ID: 6091740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of eukaryotic ribosomal RNA transcription by RNA polymerase modification.
    Bateman E; Paule MR
    Cell; 1986 Nov; 47(3):445-50. PubMed ID: 3768960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation and regulation mechanisms of ribosomal RNA transcription in the eukaryote Acanthamoeba castellanii.
    Paule MR; Bateman E; Hoffman L; Iida C; Imboden M; Kubaska W; Kownin P; Li H; Lofquist A; Risi P
    Mol Cell Biochem; 1991 May 29-Jun 12; 104(1-2):119-26. PubMed ID: 1921990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footprinting of ribosomal RNA genes by transcription initiation factor and RNA polymerase I.
    Bateman E; Iida CT; Kownin P; Paule MR
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):8004-8. PubMed ID: 3865211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of single-base substitutions within the Acanthamoeba castellanii rRNA promoter on transcription and on binding of transcription initiation factor and RNA polymerase I.
    Kownin P; Bateman E; Paule MR
    Mol Cell Biol; 1988 Feb; 8(2):747-53. PubMed ID: 3352603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional control regions: nucleotide sequence requirements for initiation by RNA polymerase II and III.
    Shenk T
    Curr Top Microbiol Immunol; 1981; 93():25-46. PubMed ID: 7026181
    [No Abstract]   [Full Text] [Related]  

  • 9. Eukaryotic gene transcription with purified components.
    Dignam JD; Martin PL; Shastry BS; Roeder RG
    Methods Enzymol; 1983; 101():582-98. PubMed ID: 6888276
    [No Abstract]   [Full Text] [Related]  

  • 10. Length variation in eukaryotic rRNAs: small subunit rRNAs from the protists Acanthamoeba castellanii and Euglena gracilis.
    Gunderson JH; Sogin ML
    Gene; 1986; 44(1):63-70. PubMed ID: 3095190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.
    Hamada M; Huang Y; Lowe TM; Maraia RJ
    Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The start site of the Acanthamoeba castellanii ribosomal RNA transcription unit.
    Perna PJ; Harris GH; Iida CT; Kownin P; Bugren S; Paule MR
    Gene Expr; 1992; 2(1):71-8. PubMed ID: 1617304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The association of TIF-IA and polymerase I mediates promoter recruitment and regulation of ribosomal RNA transcription in Acanthamoeba castellanii.
    Gogain JC; Paule MR
    Gene Expr; 2005; 12(4-6):259-71. PubMed ID: 16358415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ribosomal RNA promoter of Acanthamoeba castellanii determined by transcription in a cell-free system.
    Kownin P; Iida CT; Brown-Shimer S; Paule MR
    Nucleic Acids Res; 1985 Sep; 13(17):6237-48. PubMed ID: 2995922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis.
    Moss T
    Nature; 1983 Mar 17-23; 302(5905):223-8. PubMed ID: 6835360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation by c-Myc of transcription by RNA polymerases I, II and III.
    Gomez-Roman N; Felton-Edkins ZA; Kenneth NS; Goodfellow SJ; Athineos D; Zhang J; Ramsbottom BA; Innes F; Kantidakis T; Kerr ER; Brodie J; Grandori C; White RJ
    Biochem Soc Symp; 2006; (73):141-54. PubMed ID: 16626295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-dependent RNA polymerase II from Acanthamoeba castellanii. Comparison of the catalytic properties and subunit architectures of the trophozoite and cyst enzymes.
    Detke S; Paule MR
    Biochim Biophys Acta; 1978 Sep; 520(2):376-92. PubMed ID: 708741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription of mouse rRNA genes by RNA polymerase I: in vitro and in vivo initiation and processing sites.
    Miller KG; Sollner-Webb B
    Cell; 1981 Nov; 27(1 Pt 2):165-74. PubMed ID: 7326749
    [No Abstract]   [Full Text] [Related]  

  • 19. DNA-dependent RNA polymerase III from Acanthamoeba castellanii: comparison of the catalytic properties of the trophozoite and cyst enzymes.
    Detke S; Paule MR
    J Protozool; 1979 May; 26(2):319-23. PubMed ID: 490436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of components required for accurate transcription of ribosomal RNA from Acanthamoeba castellanii.
    Iida CT; Paule MR
    Nucleic Acids Res; 1992 Jun; 20(12):3211-21. PubMed ID: 1620619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.