BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6355487)

  • 1. Crystallographic observations of the metal ion triple in the active site region of alkaline phosphatase.
    Sowadski JM; Handschumacher MD; Murthy HM; Kundrot CE; Wyckoff HW
    J Mol Biol; 1983 Oct; 170(2):575-81. PubMed ID: 6355487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution.
    Sowadski JM; Handschumacher MD; Murthy HM; Foster BA; Wyckoff HW
    J Mol Biol; 1985 Nov; 186(2):417-33. PubMed ID: 3910843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase.
    Otvos JD; Armitage IM
    Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 113Cd NMR. Arsenate binding to Cd(II) alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4987-90. PubMed ID: 6425281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase.
    de Backer MM; McSweeney S; Lindley PF; Hough E
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1555-61. PubMed ID: 15333925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis.
    Xu X; Qin XQ; Kantrowitz ER
    Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis.
    Kim EE; Wyckoff HW
    J Mol Biol; 1991 Mar; 218(2):449-64. PubMed ID: 2010919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli.
    Guerrier-Takada C; Haydock K; Allen L; Altman S
    Biochemistry; 1986 Apr; 25(7):1509-15. PubMed ID: 2423112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli.
    Kazakov S; Altman S
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9193-7. PubMed ID: 1718000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic analysis of reversible metal binding observed in a mutant (Asp153-->Gly) of Escherichia coli alkaline phosphatase.
    Dealwis CG; Brennan C; Christianson K; Mandecki W; Abad-Zapatero C
    Biochemistry; 1995 Oct; 34(43):13967-73. PubMed ID: 7577993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase.
    Cioni P; Piras L; Strambini GB
    Eur J Biochem; 1989 Nov; 185(3):573-9. PubMed ID: 2686989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate binding to alkaline phosphatase. Metal ion dependence.
    Applebury ML; Johnson BP; Coleman JE
    J Biol Chem; 1970 Oct; 245(19):4968-76. PubMed ID: 4319108
    [No Abstract]   [Full Text] [Related]  

  • 19. Calorimetry of alkaline phosphatase. Stability of the monomer and effect of metal ion and phosphate binding on dimer stability.
    Chlebowski JF; Mabrey S; Falk MC
    J Biol Chem; 1979 Jul; 254(13):5745-53. PubMed ID: 36386
    [No Abstract]   [Full Text] [Related]  

  • 20. Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase.
    Hoylaerts MF; Van Kerckhoven S; Kiffer-Moreira T; Sheen C; Narisawa S; Millán JL
    PLoS One; 2015; 10(3):e0119874. PubMed ID: 25775211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.