These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6355767)

  • 1. Expression of a prokaryotic gene in yeast: isolation and characterization of mutants with increased expression.
    Cohen JD; Abrams E; Eccleshall TR; Buchferer B; Marmur J
    Mol Gen Genet; 1983; 191(3):451-9. PubMed ID: 6355767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase.
    Cohen JD; Eccleshall TR; Needleman RB; Federoff H; Buchferer BA; Marmur J
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1078-82. PubMed ID: 6987664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Insertion of transposon Tn9 into the spinal (Escherichia coli-Saccharomyces cerevisiae) plasmids and the expression of the prokaryotic gene of chloramphenicol resistance in yeast cells].
    Fedorova IV; Kozhina TN; Peshekhonov VT; Chepurnaia OV; Zakharov IA
    Genetika; 1983 Apr; 19(4):541-7. PubMed ID: 6305766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1986; 45(2):149-58. PubMed ID: 3026903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1987; 52(1):59-70. PubMed ID: 3036659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Tn9-derived chloramphenicol resistance in Bacillus subtilis.
    Goldfarb DS; Doi RH; Rodriguez RL
    Nature; 1981 Sep; 293(5830):309-11. PubMed ID: 6268988
    [No Abstract]   [Full Text] [Related]  

  • 8. Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis.
    Kreft J; Burger KJ; Goebel W
    Mol Gen Genet; 1983; 190(3):384-9. PubMed ID: 6410152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements.
    Close TJ; Rodriguez RL
    Gene; 1982 Dec; 20(2):305-16. PubMed ID: 6299895
    [No Abstract]   [Full Text] [Related]  

  • 10. Plasmid vectors for the selection of promoters.
    Brosius J
    Gene; 1984 Feb; 27(2):151-60. PubMed ID: 6327464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional prokaryotic gene control signals within a eukaryotic rainbow trout protamine promoter.
    Jankowski JM; Walczyk E; Dixon GH
    Biosci Rep; 1985 Jun; 5(6):453-61. PubMed ID: 3899211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transcriptional regulation of chloramphenicol acetyl transferase.
    Byeon WH; Weisblum B
    J Bacteriol; 1984 May; 158(2):543-50. PubMed ID: 6202672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme regulates the expression in Saccharomyces cerevisiae of chimaeric genes containing 5'-flanking soybean leghemoglobin sequences.
    Jensen EO; Marcker KA; Villadsen IS
    EMBO J; 1986 May; 5(5):843-7. PubMed ID: 3013619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli.
    Gil JA; Kieser HM; Hopwood DA
    Gene; 1985; 38(1-3):1-8. PubMed ID: 3905512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of human dihydrofolate reductase cDNA and its induction by chloramphenicol in Bacillus subtilis.
    Morandi C; Perego M; Mazza PG
    Gene; 1984 Oct; 30(1-3):69-77. PubMed ID: 6096225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence analysis and overexpression of the gene encoding a type III chloramphenicol acetyltransferase.
    Murray IA; Hawkins AR; Keyte JW; Shaw WV
    Biochem J; 1988 May; 252(1):173-9. PubMed ID: 3048245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system.
    Zaghloul TI; Doi RH
    J Bacteriol; 1987 Mar; 169(3):1212-6. PubMed ID: 3102458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria.
    Brückner R; Zyprian E; Matzura H
    Gene; 1984 Dec; 32(1-2):151-60. PubMed ID: 6442250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria.
    Gaffney DF; Cundliffe E; Foster TJ
    J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to isolate DNA sequences that are promoter-active in Escherichia coli and in yeast.
    Kwak JW; Kim J; Yoo OJ; Han MH
    Biochem Biophys Res Commun; 1987 Dec; 149(3):846-51. PubMed ID: 3322286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.