These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 6356038)
1. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification. Krzyzosiak WJ; Ciesiołka J Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038 [TBL] [Abstract][Full Text] [Related]
2. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence. Okabe N; Cramer F J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic conversion of guanosine 3' adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. Droogmans L; Grosjean H EMBO J; 1987 Feb; 6(2):477-83. PubMed ID: 3556165 [TBL] [Abstract][Full Text] [Related]
4. Chemical modification study of aminoacyl-tRNA conformation. Negishi K; Nishimura S; Harada F; Hayatsu H Nucleic Acids Res; 1979 Mar; 6(3):899-914. PubMed ID: 375199 [TBL] [Abstract][Full Text] [Related]
5. A structurally modified yeast tRNAPhe with six nucleotides in the anticodon loop lacks significant phenylalanine acceptance. Nishikawa K; Hecht SM J Biol Chem; 1982 Sep; 257(18):10536-9. PubMed ID: 7050115 [TBL] [Abstract][Full Text] [Related]
6. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction]. Katunin VI; Kirillov SV Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167 [TBL] [Abstract][Full Text] [Related]
7. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
8. Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Kuchino Y; Borek E; Grunberger D; Mushinski JF; Nishimura S Nucleic Acids Res; 1982 Oct; 10(20):6421-32. PubMed ID: 6924749 [TBL] [Abstract][Full Text] [Related]
9. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding. Bujalowski W; Graeser E; McLaughlin LW; Proschke D Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189 [TBL] [Abstract][Full Text] [Related]
10. Effect of ribosome binding and translocation on the anticodon of tRNAPhe as studied by wybutine fluorescence. Paulsen H; Robertson JM; Wintermeyer W Nucleic Acids Res; 1982 Apr; 10(8):2651-63. PubMed ID: 7043399 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Krzyzosiak WJ; Marciniec T; Wiewiorowski M; Romby P; Ebel JP; Giegé R Biochemistry; 1988 Jul; 27(15):5771-7. PubMed ID: 3179275 [TBL] [Abstract][Full Text] [Related]
12. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
13. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification. Schulman LH; Pelka H Biochemistry; 1976 Dec; 15(26):5769-75. PubMed ID: 827308 [TBL] [Abstract][Full Text] [Related]
14. The nucleotide sequence of tRNA4Val of Drosophila melanogaster. Chloroacetaldehyde modification as an aid to RNA sequencing. Addison WR; Gillam IC; Tener GM J Biol Chem; 1982 Jan; 257(2):674-7. PubMed ID: 6798031 [TBL] [Abstract][Full Text] [Related]
15. The conformation of the tRNAPhe anticodon loop monitored by fluorescence. Wells BD Nucleic Acids Res; 1984 Feb; 12(4):2157-70. PubMed ID: 6366743 [TBL] [Abstract][Full Text] [Related]
16. Procedure for C2 deuteration of nucleic acids and determination of A psi 31 pseudouridine conformation by nuclear Overhauser effect in yeast tRNAPhe. Roy S; Papastavros MZ; Redfield AG Nucleic Acids Res; 1982 Dec; 10(24):8341-9. PubMed ID: 6761652 [TBL] [Abstract][Full Text] [Related]
17. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167 [TBL] [Abstract][Full Text] [Related]
18. Specific replacement of functional groups of uridine-33 in yeast phenylalanine transfer ribonucleic acid. Wittenberg WL; Uhlenbeck OC Biochemistry; 1985 May; 24(11):2705-12. PubMed ID: 3896303 [TBL] [Abstract][Full Text] [Related]
19. Alterations in post-transcriptional modification of the Y base in phenylalanine tRNA from tumor cells. Grunberger D; Pergolizzi RG; Kuchino Y; Mushinski JF; Nishimura S Recent Results Cancer Res; 1983; 84():133-45. PubMed ID: 6405457 [TBL] [Abstract][Full Text] [Related]
20. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]