These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6356669)
1. Hydrogen bond indices and tertiary structure of yeast tRNAPhe. de Giambiagi MS; Giambiagi M; Esquivel DM Z Naturforsch C Biosci; 1983; 38(7-8):621-30. PubMed ID: 6356669 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution. Römer R; Varadi V Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen bonding in yeast phenylalanine transfer RNA. Quigley GJ; Wang AH; Seeman NC; Suddath FL; Rich A; Sussman JL; Kim SH Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4866-70. PubMed ID: 1108007 [TBL] [Abstract][Full Text] [Related]
4. Crystallographic refinement of yeast aspartic acid transfer RNA. Westhof E; Dumas P; Moras D J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553 [TBL] [Abstract][Full Text] [Related]
5. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167 [TBL] [Abstract][Full Text] [Related]
6. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction. Mizuno H; Sundaralingam M Nucleic Acids Res; 1978 Nov; 5(11):4451-61. PubMed ID: 724522 [TBL] [Abstract][Full Text] [Related]
7. Structure of the ribotrinucleoside diphosphate codon UpUpC bound to tRNAPhe from yeast. A time-dependent transferred nuclear Overhauser enhancement study. Clore GM; Gronenborn AM; McLaughlin LW J Mol Biol; 1984 Mar; 174(1):163-73. PubMed ID: 6371248 [TBL] [Abstract][Full Text] [Related]
8. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification. Krzyzosiak WJ; Ciesiołka J Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038 [TBL] [Abstract][Full Text] [Related]
9. Structlre of transfer RNA molecules containing the long variable loop. Brennan T; Sundaralingam M Nucleic Acids Res; 1976 Nov; 3(11):3235-50. PubMed ID: 794835 [TBL] [Abstract][Full Text] [Related]
10. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4501-20. PubMed ID: 6346269 [TBL] [Abstract][Full Text] [Related]
11. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly. Hyde EI Eur J Biochem; 1986 Feb; 155(1):57-68. PubMed ID: 2419133 [TBL] [Abstract][Full Text] [Related]
12. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts. Millen AL; Churchill CD; Manderville RA; Wetmore SD J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889 [TBL] [Abstract][Full Text] [Related]
13. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
14. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances. Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428 [TBL] [Abstract][Full Text] [Related]
15. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding. Bujalowski W; Graeser E; McLaughlin LW; Proschke D Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189 [TBL] [Abstract][Full Text] [Related]
16. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745 [TBL] [Abstract][Full Text] [Related]
17. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
18. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid. Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039 [TBL] [Abstract][Full Text] [Related]
19. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
20. Influence of the polyamines spermine and spermidine on yeast tRNAPhe as revealed from its imino proton NMR spectrum. Heerschap A; Walters JA; Hilbers CW Nucleic Acids Res; 1986 Jan; 14(2):983-98. PubMed ID: 3511448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]