These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6357084)

  • 1. Interaction of pH and NaCl on culture density of Clostridium botulinum 62A.
    Montville TJ
    Appl Environ Microbiol; 1983 Oct; 46(4):961-3. PubMed ID: 6357084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of pH- and salt-tolerant subpopulations from Clostridium botulinum.
    Montville TJ
    Appl Environ Microbiol; 1984 Jan; 47(1):28-30. PubMed ID: 6364971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF; Mason DR; Peck MW
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium hypophosphite inhibition of the growth of selected gram-positive foodborne pathogenic bacteria.
    Rhodehamel EJ; Pierson MD
    Int J Food Microbiol; 1990 Oct; 11(2):167-78. PubMed ID: 2124497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 to 50 degrees F. TID-24781.
    TID Rep; 1966 Jan; ():1-57. PubMed ID: 4905221
    [No Abstract]   [Full Text] [Related]  

  • 7. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between radiation resistance and salt sensitivity of spores of five strains of Clostridium botulinum types A, B, and E.
    Kiss I; Rhee CO; Grecz N; Roberts TA; Farkas J
    Appl Environ Microbiol; 1978 Mar; 35(3):533-9. PubMed ID: 345971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores.
    Ito KA; Chen JK; Lerke PA; Seeger ML; Unverferth JA
    Appl Environ Microbiol; 1976 Jul; 32(1):121-4. PubMed ID: 9898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-to-turbidity model for non-protective type B Clostridium botulinum.
    Whiting RC; Oriente JC
    Int J Food Microbiol; 1997 Apr; 36(1):49-60. PubMed ID: 9168314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Clostridium botulinum 52A toxicity and protease activity by sodium acid pyrophosphate in media systems.
    Wagner MK; Busta FF
    Appl Environ Microbiol; 1985 Jul; 50(1):16-20. PubMed ID: 2992374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effect of water activity, pH and temperature on the growth of Clostridium botulinum from spore and vegetative cell inocula.
    Baird-Parker AC; Freame B
    J Appl Bacteriol; 1967 Dec; 30(3):420-9. PubMed ID: 4865469
    [No Abstract]   [Full Text] [Related]  

  • 15. Intrinsic factors in meat products counteracting botulinogenic conditions.
    Blanche Koelensmid WA; van Rhee R
    Antonie Van Leeuwenhoek; 1968; 34(3):287-97. PubMed ID: 4891323
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of sodium chloride and pH on the outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1966 Jan; 14(1):49-54. PubMed ID: 5330680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination.
    Smoot LA; Pierson MD
    Appl Environ Microbiol; 1981 Sep; 42(3):477-83. PubMed ID: 6794451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperatures.
    Gibson AM; Ellis-Brownlee RC; Cahill ME; Szabo EA; Fletcher GC; Bremer PJ
    Int J Food Microbiol; 2000 Mar; 54(1-2):39-48. PubMed ID: 10746573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry.
    Gibson AM; Bratchell N; Roberts TA
    J Appl Bacteriol; 1987 Jun; 62(6):479-90. PubMed ID: 3305458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system.
    Rayman K; Malik N; Hurst A
    Appl Environ Microbiol; 1983 Dec; 46(6):1450-2. PubMed ID: 6362566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.