These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6357084)

  • 21. Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B.
    Lövenklev M; Artin I; Hagberg O; Borch E; Holst E; Rådström P
    Appl Environ Microbiol; 2004 May; 70(5):2928-34. PubMed ID: 15128553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham.
    Lebrun S; Van Nieuwenhuysen T; Crèvecoeur S; Vanleyssem R; Thimister J; Denayer S; Jeuge S; Daube G; Clinquart A; Fremaux B
    Int J Food Microbiol; 2020 Dec; 334():108853. PubMed ID: 32932195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dependence of Clostridium botulinum gas and protease production on culture conditions.
    Montville TJ
    Appl Environ Microbiol; 1983 Feb; 45(2):571-5. PubMed ID: 6338828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heat injury and recovery of vegetative cells of Clostridium botulinum type E.
    Pierson MD; Payne SL; Ades GL
    Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.
    Briozzo J; de Lagarde EA; Chirife J; Parada JL
    Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-to-detection, percent-growth-positive and maximum growth rate models for Clostridium botulinum 56A at multiple temperatures.
    Zhao L; Montville TJ; Schaffner DW
    Int J Food Microbiol; 2002 Aug; 77(3):187-97. PubMed ID: 12160078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical manipulation of the heat resistance of Clostridium botulinum spores.
    Alderton G; Ito KA; Chen JK
    Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A lysin(s) in lysates of Clostridium botulinum A190 induced by ultraviolet ray or mitomycin C.
    Mitsui N; Kiritani K; Nishida S
    Jpn J Microbiol; 1973 Sep; 17(5):353-60. PubMed ID: 4587761
    [No Abstract]   [Full Text] [Related]  

  • 29. Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium.
    Marshall BJ; Ohye DF; Christian JH
    Appl Microbiol; 1971 Feb; 21(2):363-4. PubMed ID: 5549707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 degrees F to 50 degrees F. Annual report, June 29, 1962-June 28, 1963. TID-24778.
    TID Rep; 1967 Jul; ():1-86. PubMed ID: 4890187
    [No Abstract]   [Full Text] [Related]  

  • 31. Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic clostridium botulinum.
    Webb MD; Pin C; Peck MW; Stringer SC
    Appl Environ Microbiol; 2007 Apr; 73(7):2118-27. PubMed ID: 17277206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate.
    Blocher JC; Busta FF
    J Appl Bacteriol; 1985 Nov; 59(5):469-78. PubMed ID: 3936834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and toxin formation by Clostridium botulinum at low pH values.
    Smelt JP; Raatjes GJ; Crowther JS; Verrips CT
    J Appl Bacteriol; 1982 Feb; 52(1):75-82. PubMed ID: 7040328
    [No Abstract]   [Full Text] [Related]  

  • 34. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502.
    Derman Y; Söderholm H; Lindström M; Korkeala H
    Food Microbiol; 2015 Apr; 46():463-470. PubMed ID: 25475316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevalence of Clostridium botulinum in semipreserved meat products.
    Abrahamsson K; Riemann H
    Appl Microbiol; 1971 Mar; 21(3):543-4. PubMed ID: 4928608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of potassium sorbate and other antibotulinal agents on germination and outgrowth of Clostridium botulinum type E spores in microcultures.
    Seward RA; Deibel RH; Lindsay RC
    Appl Environ Microbiol; 1982 Nov; 44(5):1212-21. PubMed ID: 6758699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergism of lysozyme, proteases and inorganic monovalent anions in the bacteriolysis of oral Streptococcus mutans GS5.
    Pollock JJ; Goodman H; Elsey PK; Iacono VJ
    Arch Oral Biol; 1983; 28(9):865-71. PubMed ID: 6314951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular synthesis of Clostridium botulinum type B toxin. I. Demonstration of toxin synthesis and sedimentation studies on toxic products.
    Gerwing J; Morrell RW; Nitz RM
    J Bacteriol; 1968 Jan; 95(1):22-7. PubMed ID: 4866099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clostridium botulinum can grow and form toxin at pH values lower than 4.6.
    Raatjes GJ; Smelt JP
    Nature; 1979 Oct; 281(5730):398-9. PubMed ID: 39257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of postirradiation incubation temperature on recovery of radiation-injured Clostridium botulinum 62A spores.
    Chowdhury MS; Rowley DB; Anellis A; Levinson HS
    Appl Environ Microbiol; 1976 Jul; 32(1):172-8. PubMed ID: 788635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.