These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 6357813)
1. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. II. Relief of cell-cycle constraints allows accelerated cell divisions. Singer RA; Johnston GC Exp Cell Res; 1983 Nov; 149(1):15-26. PubMed ID: 6357813 [TBL] [Abstract][Full Text] [Related]
2. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. I. Slowing S phase or nuclear division decreases the G1 cell cycle period. Johnston GC; Singer RA Exp Cell Res; 1983 Nov; 149(1):1-13. PubMed ID: 6357811 [TBL] [Abstract][Full Text] [Related]
3. Growth and the DNA-division sequence in the yeast Saccharomyces cerevisiae. Singer RA; Johnston GC Exp Cell Res; 1985 Apr; 157(2):387-96. PubMed ID: 3884347 [TBL] [Abstract][Full Text] [Related]
4. Nature of the G1 phase of the yeast Saccharomyces cerevisiae. Singer RA; Johnston GC Proc Natl Acad Sci U S A; 1981 May; 78(5):3030-3. PubMed ID: 7019917 [TBL] [Abstract][Full Text] [Related]
5. Cell size control of development in Saccharomyces cerevisiae. Calvert GR; Dawes IW Nature; 1984 Nov 1-7; 312(5989):61-3. PubMed ID: 6387507 [TBL] [Abstract][Full Text] [Related]
6. A dependent pathway of gene functions leading to chromosome segregation in Saccharomyces cerevisiae. Wood JS; Hartwell LH J Cell Biol; 1982 Sep; 94(3):718-26. PubMed ID: 6752153 [TBL] [Abstract][Full Text] [Related]
7. Control of cell division in the yeast Saccharomyces cerevisiae cultured at different growth rates. Carter BL; Jagadish MN Exp Cell Res; 1978 Mar; 112(2):373-83. PubMed ID: 344055 [No Abstract] [Full Text] [Related]
8. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae. Dudani AK; Trivedi A; Prasad R FEBS Lett; 1983 Mar; 153(1):34-6. PubMed ID: 6337878 [TBL] [Abstract][Full Text] [Related]
9. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. Plesset J; Ludwig JR; Cox BS; McLaughlin CS J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970 [TBL] [Abstract][Full Text] [Related]
10. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. Hartwell LH; Unger MW J Cell Biol; 1977 Nov; 75(2 Pt 1):422-35. PubMed ID: 400873 [TBL] [Abstract][Full Text] [Related]
11. Residual cell division measurements are unreliable as indicators of the timing of events in the Saccharomyces cerevisiae cell cycle. Richmond KM; Williamson DH J Cell Sci; 1983 Nov; 64():307-22. PubMed ID: 6363430 [TBL] [Abstract][Full Text] [Related]
12. Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae. Reed SI; Wittenberg C Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5697-701. PubMed ID: 2165600 [TBL] [Abstract][Full Text] [Related]
13. A bifunctional gene product involved in two phases of the yeast cell cycle. Piggott JR; Rai R; Carter BL Nature; 1982 Jul; 298(5872):391-3. PubMed ID: 7045699 [TBL] [Abstract][Full Text] [Related]
14. Effects of temperature and nutritional conditions on the mitotic cell cycle of Saccharomyces cerevisiae. Jagadish MN; Carter BL J Cell Sci; 1978 Jun; 31():71-8. PubMed ID: 353060 [TBL] [Abstract][Full Text] [Related]
15. Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the G0 of higher eucaryotes. Iida H; Yahara I J Cell Biol; 1984 Apr; 98(4):1185-93. PubMed ID: 6371018 [TBL] [Abstract][Full Text] [Related]
16. Identification of a labile protein involved in the G1-to-S transition in Saccharomyces cerevisiae. Popolo L; Alberghina L Proc Natl Acad Sci U S A; 1984 Jan; 81(1):120-4. PubMed ID: 6364132 [TBL] [Abstract][Full Text] [Related]
17. Rise in intracellular pH is concurrent with 'start' progression of Saccharomyces cerevisiae. Anand S; Prasad R J Gen Microbiol; 1989 Aug; 135(8):2173-9. PubMed ID: 2699326 [TBL] [Abstract][Full Text] [Related]