These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6358898)

  • 21. Alanine transfer RNA synthetase: structure-function relationships and molecular recognition of transfer RNA.
    Schimmel P
    Adv Enzymol Relat Areas Mol Biol; 1990; 63():233-70. PubMed ID: 2407064
    [No Abstract]   [Full Text] [Related]  

  • 22. A bacterial and silkworm aminoacyl-tRNA synthetase have a common epitope which maps to the catalytic domain of each.
    Regan L; Dignam JD; Schimmel P
    J Biol Chem; 1986 Apr; 261(12):5241-4. PubMed ID: 2420799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation.
    Belchev B; Yaneva M
    Mol Biol (Mosk); 1976; 10(4):663-7. PubMed ID: 15212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordination of Mn++ ions at contact sites between tRNA and aminoacyl-tRNA synthetase.
    Backer JM; Vocel SV; Weiner LM; Oshevskii SI; Lavrik OI
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1019-26. PubMed ID: 236751
    [No Abstract]   [Full Text] [Related]  

  • 25. Evidence for dispensable sequences inserted into a nucleotide fold.
    Starzyk RM; Webster TA; Schimmel P
    Science; 1987 Sep; 237(4822):1614-8. PubMed ID: 3306924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identity of a gene responsible for suppression of aminoacyl-tRNA synthetase mutations with rpsT, the structural gene for ribosomal protein S20.
    Buckel P
    Mol Gen Genet; 1976 Dec; 149(2):225-8. PubMed ID: 796681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translocation within the acceptor helix of a major tRNA identity determinant.
    Lovato MA; Chihade JW; Schimmel P
    EMBO J; 2001 Sep; 20(17):4846-53. PubMed ID: 11532948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size polymorphism and the structure of aminoacyl-tRNA synthetases.
    Schimmel P; Jasin M; Regan L
    Fed Proc; 1984 Dec; 43(15):2987-90. PubMed ID: 6389183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A.
    Cusack S; Berthet-Colominas C; Härtlein M; Nassar N; Leberman R
    Nature; 1990 Sep; 347(6290):249-55. PubMed ID: 2205803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A continuous spectrophotometric assay for the aminoacylation of transfer RNA by alanyl-transfer RNA synthetase.
    Wu MX; Hill KA
    Anal Biochem; 1993 Jun; 211(2):320-3. PubMed ID: 8317708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli.
    Tsui WC; Fersht AR
    Nucleic Acids Res; 1981 Sep; 9(18):4627-37. PubMed ID: 6117825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.
    Boyarshin KS; Priss AE; Rayevskiy AV; Ilchenko MM; Dubey IY; Kriklivyi IA; Yaremchuk AD; Tukalo MA
    J Biomol Struct Dyn; 2017 Feb; 35(3):669-682. PubMed ID: 26886480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tripartite functional assembly of a large class I aminoacyl tRNA synthetase.
    Shiba K; Schimmel P
    J Biol Chem; 1992 Nov; 267(32):22703-6. PubMed ID: 1429621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand binding stoichiometries, subunit structure, and slow transitions in aminoacyl-tRNA synthetases.
    Mulvey RS; Fersht AR
    Biochemistry; 1977 Sep; 16(18):4005-13. PubMed ID: 199234
    [No Abstract]   [Full Text] [Related]  

  • 37. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.
    Borel F; Vincent C; Leberman R; Härtlein M
    Nucleic Acids Res; 1994 Aug; 22(15):2963-9. PubMed ID: 8065908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of temperature-sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: a possible mechanism.
    Buckel P; Piepersberg W; Böck A
    Mol Gen Genet; 1976 Nov; 149(1):51-61. PubMed ID: 796671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Superspecificity of aminoacyl-tRNA-synthases].
    Favorova OO
    Mol Biol (Mosk); 1984; 18(1):205-26. PubMed ID: 6423966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rationale for engineering an enzyme by introducing a mutation that compensates for a deletion.
    Regan L; Buxbaum L; Hill K; Schimmel P
    J Biol Chem; 1988 Dec; 263(35):18598-600. PubMed ID: 3198590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.