These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. [Peptidergic transmission and late slow EPSP in sympathetic ganglion cells]. Jiang ZG Sheng Li Ke Xue Jin Zhan; 1984 Oct; 15(4):301-5. PubMed ID: 6085775 [No Abstract] [Full Text] [Related]
46. Regulation of the M current: transduction mechanism and role in ganglionic transmission. Smith PA; Chen H; Kurenny DE; Selyanko AA; Zidichouski JA Can J Physiol Pharmacol; 1992; 70 Suppl():S12-8. PubMed ID: 1338293 [TBL] [Abstract][Full Text] [Related]
48. Caffeine and carbonyl cyanide m-chlorophenylhydrazone increased evoked and spontaneous release of luteinizing hormone-releasing hormone from intact presynaptic terminals. Cao YJ; Peng YY Neuroscience; 1999; 92(4):1511-21. PubMed ID: 10426503 [TBL] [Abstract][Full Text] [Related]
49. A novel muscarinic receptor antagonist AF-DX 116 differentially blocks slow inhibitory and slow excitatory postsynaptic potentials in the rabbit sympathetic ganglia. Mochida S; Kobayashi H Life Sci; 1988; 42(22):2195-201. PubMed ID: 2897607 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of transmitter release in bullfrog sympathetic ganglia induced by gamma-aminobutyric acid. Kato E; Kuba K J Physiol; 1980 Jan; 298():271-83. PubMed ID: 6244394 [TBL] [Abstract][Full Text] [Related]
51. Capsaicin causes release of a substance P-like peptide in guinea-pig inferior mesenteric ganglia. Dun NJ; Kiraly M J Physiol; 1983 Jul; 340():107-20. PubMed ID: 6193270 [TBL] [Abstract][Full Text] [Related]
52. Hyperpolarization following activation of K+ channels by excitatory postsynaptic potentials. Tosaka T; Tasaka J; Miyazaki T; Libet B Nature; 1983 Sep 8-14; 305(5930):148-50. PubMed ID: 6310410 [TBL] [Abstract][Full Text] [Related]
53. Antidromic inhibition of acetylcholine release from presynaptic nerve terminals in bullfrog's sympathetic ganglia. Miyagawa M; Minota S; Koketsu K Brain Res; 1981 Nov; 224(2):305-13. PubMed ID: 6974584 [TBL] [Abstract][Full Text] [Related]
54. On the role of muscarinic and peptidergic receptors in ganglionic transmission in bullfrogs in vivo. Ivanoff AY; Smith PA Am J Physiol; 1997 May; 272(5 Pt 2):R1501-14. PubMed ID: 9176342 [TBL] [Abstract][Full Text] [Related]
55. Pharmacological studies in frog sympathetic ganglion: support for the cholinergic monosynaptic hypothesis for slow IPSP mediation. Yavari P; Weight FF Brain Res; 1988 Jun; 452(1-2):175-83. PubMed ID: 3261194 [TBL] [Abstract][Full Text] [Related]
56. Electrical and synaptic properties of embryonic luteinizing hormone-releasing hormone neurons in explant cultures. Kusano K; Fueshko S; Gainer H; Wray S Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3918-22. PubMed ID: 7537379 [TBL] [Abstract][Full Text] [Related]
57. Serotonin mediates a slow excitatory potential in mammalian celiac ganglia. Kiraly M; Ma RC; Dun NJ Brain Res; 1983 Sep; 275(2):378-83. PubMed ID: 6605177 [TBL] [Abstract][Full Text] [Related]
58. Pharmacological evidence for two types of Ca2+-dependent K+-conductance in bullfrog sympathetic ganglion cells. Koyano K; Abe T Neurosci Res; 1985 Dec; 3(2):162-6. PubMed ID: 2427980 [TBL] [Abstract][Full Text] [Related]
59. [Bombesin-mediated non-cholinergic late slow excitatory postsynaptic potentials in guinea pig inferior mesenteric ganglion in vitro]. Kong DH; Wang G; Wang HM; Ke DP; Hu JL; Zhu Y; Huang ZX Sheng Li Xue Bao; 2003 Aug; 55(4):388-94. PubMed ID: 12937816 [TBL] [Abstract][Full Text] [Related]
60. Interaction of vasomotor and exocrine neurons in bullfrog paravertebral sympathetic ganglia. Ford CP; Ivanoff AY; Smith PA Can J Physiol Pharmacol; 2000 Aug; 78(8):636-44. PubMed ID: 10958164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]