These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 6360380)

  • 41. Construction of a large plasmid lacking linearizing single restriction sites by simultaneous in vivo recombination and plasmid shuffling in yeast.
    Miletti KE; Leibowitz MJ
    Yeast; 2000 Dec; 16(16):1527-34. PubMed ID: 11113975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcription stimulates homologous recombination in mammalian cells.
    Nickoloff JA; Reynolds RJ
    Mol Cell Biol; 1990 Sep; 10(9):4837-45. PubMed ID: 2167441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Double-strand breaks at an initiation site for meiotic gene conversion.
    Sun H; Treco D; Schultes NP; Szostak JW
    Nature; 1989 Mar; 338(6210):87-90. PubMed ID: 2645528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elevated recombination rates in transcriptionally active DNA.
    Thomas BJ; Rothstein R
    Cell; 1989 Feb; 56(4):619-30. PubMed ID: 2645056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Involvement of Coprinus endonuclease in preparing substrate for in vitro recombination.
    Montgomery GP; Lu BC
    Genome; 1990 Feb; 33(1):101-8. PubMed ID: 2158924
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-dependent mitotic recombination in Saccharomyces cerevisiae.
    Steele DF; Jinks-Robertson S
    Curr Genet; 1993; 23(5-6):423-9. PubMed ID: 8319298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Heritable Recombination system for synthetic Darwinian evolution in yeast.
    Romanini DW; Peralta-Yahya P; Mondol V; Cornish VW
    ACS Synth Biol; 2012 Dec; 1(12):602-9. PubMed ID: 23412545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA synthesis catalyzed in vitro by yeast extracts using A 2 μm DNA containing plasmid as template for enzymatic DNA synthesis.
    Plevani P; Capucci L; Ginelli E; Sacchi N; Badaracco G
    Curr Genet; 1982 Oct; 6(1):47-54. PubMed ID: 24186371
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Fisher AB; Canfield ZB; Hayward LC; Fong SS; McArthur GH
    Front Bioeng Biotechnol; 2013; 1():12. PubMed ID: 25024067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic recombination of homologous plasmids catalysed by cell-free extracts of topo-isomerase mutant strains of Saccharomyces cerevisiae.
    Macleod AM; Ferroni GD; Unrau P
    World J Microbiol Biotechnol; 1993 Sep; 9(5):583-6. PubMed ID: 24420205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A 5'-3' exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology.
    Huang KN; Symington LS
    Mol Cell Biol; 1993 Jun; 13(6):3125-34. PubMed ID: 8388534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase.
    Bähler J; Hagens G; Holzinger G; Scherthan H; Heyer WD
    Chromosoma; 1994 Apr; 103(2):129-41. PubMed ID: 8055710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease.
    Heyer WD; Johnson AW; Reinhart U; Kolodner RD
    Mol Cell Biol; 1995 May; 15(5):2728-36. PubMed ID: 7739553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control.
    Johnson AW; Kolodner RD
    Mol Cell Biol; 1995 May; 15(5):2719-27. PubMed ID: 7739552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae.
    Interthal H; Bellocq C; Bähler J; Bashkirov VI; Edelstein S; Heyer WD
    EMBO J; 1995 Mar; 14(6):1057-66. PubMed ID: 7720696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation between suppressed meiotic recombination and the lack of DNA strand-breaks in the rRNA genes of Saccharomyces cerevisiae.
    Høgset A; Oyen TB
    Nucleic Acids Res; 1984 Sep; 12(18):7199-213. PubMed ID: 6384933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmid recombination intermediates generated in a Saccharomyces cerevisiae cell-free recombination system.
    Symington LS; Morrison P; Kolodner R
    Mol Cell Biol; 1985 Sep; 5(9):2361-8. PubMed ID: 3915541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partial purification of an enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions.
    Symington LS; Kolodner R
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7247-51. PubMed ID: 3903750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The use of plasmid DNA to probe DNA repair functions in the yeast Saccharomyces cerevisiae.
    White CI; Sedgwick SG
    Mol Gen Genet; 1985; 201(1):99-106. PubMed ID: 3903437
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.