These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparison of endogenous and exogenous photosensitization in the lens using in vitro and photophysical studies. Roberts JE; Dillon J Lens Eye Toxic Res; 1989; 6(1-2):309-18. PubMed ID: 2488024 [TBL] [Abstract][Full Text] [Related]
4. Eye lens color: formation and function. Zigman S Science; 1971 Feb; 171(3973):807-9. PubMed ID: 5549305 [TBL] [Abstract][Full Text] [Related]
5. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein. Inoue A; Sasaki D; Satoh K Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320 [TBL] [Abstract][Full Text] [Related]
6. Crosslinking and photoreaction of ozone-oxidized calf-lens alpha-crystallin. Fujimori E Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):402-5. PubMed ID: 7061212 [TBL] [Abstract][Full Text] [Related]
9. Photochemically modified alpha-crystallin: a model system for aging in the primate lens. Ervin LA; Dillon J; Gaillard ER Photochem Photobiol; 2001 Jun; 73(6):685-91. PubMed ID: 11421076 [TBL] [Abstract][Full Text] [Related]
11. Immunological detection of N-formylkynurenine in porphyrin-mediated photooxided lens α-crystallin. Ehrenshaft M; Zhao B; Andley UP; Mason RP; Roberts JE Photochem Photobiol; 2011; 87(6):1321-9. PubMed ID: 21770952 [TBL] [Abstract][Full Text] [Related]
12. Crosslinking and blue-fluorescence of photo-oxidized calf-lens alpha-crystallin. Fujimori E Exp Eye Res; 1982 Mar; 34(3):381-8. PubMed ID: 7067746 [No Abstract] [Full Text] [Related]
13. Effect of long-wave ultraviolet light on the lens. IV. Leucine metabolism in normal human lenses in vitro. Kuck JF Ophthalmic Res; 1983; 15(4):216-9. PubMed ID: 6634057 [TBL] [Abstract][Full Text] [Related]
14. Ocular protein alterations by near UV light. Zigman S; Griess G; Yulo T; Schultz J Exp Eye Res; 1973 Mar; 15(3):255-64. PubMed ID: 4695437 [No Abstract] [Full Text] [Related]
15. 3-Hydroxykynurenine bound to eye lens proteins induces oxidative modifications in crystalline proteins through a type I photosensitizing mechanism. Ávila F; Ravello N; Zanocco AL; Gamon LF; Davies MJ; Silva E Free Radic Biol Med; 2019 Sep; 141():103-114. PubMed ID: 31128239 [TBL] [Abstract][Full Text] [Related]
16. The endogenous and exogenous mechanisms for protection from ultraviolet irradiation in the lens. Colitz CM; Bomser JA; Kusewitt DF Int Ophthalmol Clin; 2005; 45(1):141-55. PubMed ID: 15632531 [No Abstract] [Full Text] [Related]
17. Identification of photooxidation sites in bovine alpha-crystallin. Finley EL; Busman M; Dillon J; Crouch RK; Schey KL Photochem Photobiol; 1997 Nov; 66(5):635-41. PubMed ID: 9383987 [TBL] [Abstract][Full Text] [Related]
18. Detection of free radicals in UV-irradiated lens by spin trapping ESR. Murakami J; Kozuka Y; Okazaki M; Shiga T Lens Eye Toxic Res; 1992; 9(3-4):447-54. PubMed ID: 1338755 [TBL] [Abstract][Full Text] [Related]
19. N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Walrant P; Santus R Photochem Photobiol; 1974 Jun; 19(6):411-7. PubMed ID: 4839495 [No Abstract] [Full Text] [Related]
20. [Mechanism of the photodamage of eye structures. Changes in the lens crystalline charges after ultraviolet irradiation]. El'chaninov VV; Fedorovich IB Biofizika; 1990; 35(2):200-4. PubMed ID: 2369591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]