These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6360541)

  • 1. Glutathione and ocular photobiology.
    Megaw JM
    Curr Eye Res; 1984 Jan; 3(1):83-7. PubMed ID: 6360541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of ultraviolet cataracts in vitro: prevention by pyruvate.
    Hegde KR; Kovtun S; Varma SD
    J Ocul Pharmacol Ther; 2007 Oct; 23(5):492-502. PubMed ID: 17900232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arf 193nm excimer laser corneal surgery and photo-oxidation stress in aqueous humor and lens of rabbit: one-month follow-up.
    Costagliola C; Balestrieri P; Fioretti F; Frunzio S; Rinaldi M; Scibelli G
    Curr Eye Res; 1996 Apr; 15(4):355-61. PubMed ID: 8670734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ArF 193 nm excimer laser corneal surgery as a possible risk factor in cataractogenesis.
    Costagliola C; Balestrieri P; Fioretti F; Frunzio S; Rinaldi M; Scibelli G; Sebastiani A; Rinaldi E
    Exp Eye Res; 1994 Apr; 58(4):453-7. PubMed ID: 7925681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and biochemical changes in lenses of guinea pigs after vitamin-C-deficient diet and UV-B radiation.
    Malik A; Kojima M; Sasaki K
    Ophthalmic Res; 1995; 27(4):189-96. PubMed ID: 8538997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms involved in cataract development following near-ultraviolet radiation of cultured lenses.
    Hightower K; McCready J
    Curr Eye Res; 1992 Jul; 11(7):679-89. PubMed ID: 1325894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid and the eye with special reference to the lens.
    Varma SD
    Ann N Y Acad Sci; 1987; 498():280-306. PubMed ID: 3039891
    [No Abstract]   [Full Text] [Related]  

  • 9. TEMPOL protects against lens DNA strand breaks and cataract in the x-rayed rabbit.
    Sasaki H; Lin LR; Yokoyama T; Sevilla MD; Reddy VN; Giblin FJ
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):544-52. PubMed ID: 9501865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses.
    Lerman S
    Am J Optom Physiol Opt; 1987 Jan; 64(1):11-22. PubMed ID: 3548399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of light scattering and redox balance in the rat lens after in vivo exposure to close-to-threshold dose ultraviolet radiation.
    Wang J; Löfgren S; Dong X; Galichanin K; Söderberg PG
    Acta Ophthalmol; 2010 Nov; 88(7):779-85. PubMed ID: 20102349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threat of ultraviolet radiation to the eye--how to protect against it.
    Pitts DG
    J Am Optom Assoc; 1981 Dec; 52(12):949-57. PubMed ID: 7199062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major changes in human ocular UV protection with age.
    Bova LM; Sweeney MH; Jamie JF; Truscott RJ
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):200-5. PubMed ID: 11133868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid peroxide and reactive oxygen species generating systems of the crystalline lens.
    Babizhayev MA; Costa EB
    Biochim Biophys Acta; 1994 Feb; 1225(3):326-37. PubMed ID: 8312381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet-B effects on ocular tissues.
    Babu V; Misra RB; Joshi PC
    Biochem Biophys Res Commun; 1995 May; 210(2):417-23. PubMed ID: 7755617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium.
    Reddy VN; Giblin FJ; Lin LR; Chakrapani B
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV-B-induced damage to the lens in vitro: prevention by caffeine.
    Varma SD; Hegde KR; Kovtun S
    J Ocul Pharmacol Ther; 2008 Oct; 24(5):439-44. PubMed ID: 18788993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata.
    Shiu CT; Lee TM
    J Exp Bot; 2005 Nov; 56(421):2851-65. PubMed ID: 16157654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous measurement of reduced and oxidized glutathione in human aqueous humor and cataracts by electrochemical detection.
    Chakrapani B; Yedavally S; Leverenz V; Giblin FJ; Reddy VN
    Ophthalmic Res; 1995; 27 Suppl 1():69-77. PubMed ID: 8577465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage.
    Mizdrak J; Hains PG; Truscott RJ; Jamie JF; Davies MJ
    Free Radic Biol Med; 2008 Mar; 44(6):1108-19. PubMed ID: 18206985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.