These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6361270)

  • 1. Experimental evolution of a novel pathway for glycerol dissimilation in Escherichia coli.
    Jin RZ; Tang JC; Lin EC
    J Mol Evol; 1983; 19(6):429-36. PubMed ID: 6361270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coli.
    Jin RZ; Lin EC
    J Gen Microbiol; 1984 Jan; 130(1):83-8. PubMed ID: 6368745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derepression of an NAD-linked dehydrogenase that serves an Escherichia coli mutant for growth on glycerol.
    Tang JC; St Martin EJ; Lin EC
    J Bacteriol; 1982 Dec; 152(3):1001-7. PubMed ID: 6754692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism.
    Tang CT; Ruch FE; Lin CC
    J Bacteriol; 1979 Oct; 140(1):182-7. PubMed ID: 40950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinase replacement by a dehydrogenase for Escherichia coli glycerol utilization.
    St Martin EJ; Freedberg WB; Lin EC
    J Bacteriol; 1977 Sep; 131(3):1026-8. PubMed ID: 197059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase.
    Truniger V; Boos W
    J Bacteriol; 1994 Mar; 176(6):1796-800. PubMed ID: 8132480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an Escherichia coli mutant which utilizes glycerol in the absence of cyclic adenosine monophosphate.
    Fraser AD; Yamazaki H
    Can J Microbiol; 1980 Mar; 26(3):393-6. PubMed ID: 6250693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.
    Tang JC; Forage RG; Lin EC
    J Bacteriol; 1982 Dec; 152(3):1169-74. PubMed ID: 6183251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring a metabolic pathway.
    Richard JP
    ACS Chem Biol; 2008 Oct; 3(10):605-7. PubMed ID: 18928248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes.
    Ruch FE; Lin EC
    J Bacteriol; 1975 Oct; 124(1):348-52. PubMed ID: 170247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway.
    Monniot C; Zébré AC; Aké FM; Deutscher J; Milohanic E
    J Bacteriol; 2012 Sep; 194(18):4972-82. PubMed ID: 22773791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.
    Forage RG; Lin EC
    J Bacteriol; 1982 Aug; 151(2):591-9. PubMed ID: 6284704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional insights into the flexible β-hairpin of glycerol dehydrogenase.
    Park T; Hoang HN; Kang JY; Park J; Mun SA; Jin M; Yang J; Jung CH; Eom SH
    FEBS J; 2023 Sep; 290(17):4342-4355. PubMed ID: 37165682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae.
    Yu KO; Kim SW; Han SO
    Bioresour Technol; 2010 Jun; 101(11):4157-61. PubMed ID: 20149645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae.
    Sprenger GA; Hammer BA; Johnson EA; Lin EC
    J Gen Microbiol; 1989 May; 135(5):1255-62. PubMed ID: 2559947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii.
    Daniel R; Stuertz K; Gottschalk G
    J Bacteriol; 1995 Aug; 177(15):4392-401. PubMed ID: 7635824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomic diversity of anaerobic glycerol dissimilation in the Enterobacteriaceae.
    Bouvet OM; Lenormand P; Ageron E; Grimont PA
    Res Microbiol; 1995 May; 146(4):279-90. PubMed ID: 7569322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.
    Wang C; Cai H; Chen Z; Zhou Z
    Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.