These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6362436)

  • 1. Metabolic adjustments of small passerine birds for migration and cold.
    Dawson WR; Marsh RL; Yacoe ME
    Am J Physiol; 1983 Dec; 245(6):R755-67. PubMed ID: 6362436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal metabolic acclimatization in mountain chickadees and juniper titmice.
    Cooper SJ
    Physiol Biochem Zool; 2002; 75(4):386-95. PubMed ID: 12324895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in Passeriformes and non-Passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes.
    Gavrilov VM
    Q Rev Biol; 2014 Jun; 89(2):107-50. PubMed ID: 24984324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic flexibility in passerine birds: seasonal variation in fuel storage, mobilization and transport.
    Liknes ET; Guglielmo CG; Swanson DL
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Aug; 174():1-10. PubMed ID: 24704472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acclimatization of seasonal energetics in northern cardinals (Cardinalis cardinalis) through plasticity of metabolic rates and ceilings.
    Sgueo C; Wells ME; Russell DE; Schaeffer PJ
    J Exp Biol; 2012 Jul; 215(Pt 14):2418-24. PubMed ID: 22723481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wintering Snow Buntings Elevate Cold Hardiness to Extreme Levels but Show No Changes in Maintenance Costs.
    Le Pogam A; Love OP; Régimbald L; Dubois K; Hallot F; Milbergue M; Petit M; O'Connor RS; Vézina F
    Physiol Biochem Zool; 2020; 93(6):417-433. PubMed ID: 33048603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine.
    Cortés PA; Petit M; Lewden A; Milbergue M; Vézina F
    J Exp Zool A Ecol Genet Physiol; 2015 Mar; 323(3):179-90. PubMed ID: 25690265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal Metabolic Acclimatization Varies in Direction and Magnitude among Years in Two Arid-Zone Passerines.
    Noakes MJ; McKechnie AE
    Physiol Biochem Zool; 2020; 93(2):140-152. PubMed ID: 32027231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dominant black-capped chickadees pay no maintenance energy costs for their wintering status and are not better at enduring cold than subordinate individuals.
    Lewden A; Petit M; Vézina F
    J Comp Physiol B; 2012 Apr; 182(3):381-92. PubMed ID: 22037961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are summit metabolism and thermogenic endurance correlated in winter-acclimatized passerine birds?
    Swanson DL
    J Comp Physiol B; 2001 Aug; 171(6):475-81. PubMed ID: 11585259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.
    Swanson DL; King MO; Culver W; Zhang Y
    Physiol Biochem Zool; 2017; 90(2):210-222. PubMed ID: 28277951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal Metabolic Acclimatization Varies in Direction and Magnitude among Populations of an Afrotropical Passerine Bird.
    Noakes MJ; Wolf BO; McKechnie AE
    Physiol Biochem Zool; 2017; 90(2):178-189. PubMed ID: 28277960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and ventilatory acclimatization to cold stress in house sparrows (Passer domesticus).
    Arens JR; Cooper SJ
    Physiol Biochem Zool; 2005; 78(4):579-89. PubMed ID: 15957112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal metabolic adjustments in an avian evolutionary relict restricted to mountain habitat.
    Oswald KN; Lee ATK; Smit B
    J Therm Biol; 2021 Jan; 95():102815. PubMed ID: 33454043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal acclimatization in American goldfinches: the role of the pectoralis muscle.
    Yacoe ME; Dawson WR
    Am J Physiol; 1983 Aug; 245(2):R265-71. PubMed ID: 6224430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds.
    Zhang Y; King MO; Harmon E; Eyster K; Swanson DL
    J Comp Physiol B; 2015 Oct; 185(7):797-810. PubMed ID: 26194862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature acclimation in birds and mammals.
    Chaffee RR; Roberts JC
    Annu Rev Physiol; 1971; 33():155-202. PubMed ID: 4951049
    [No Abstract]   [Full Text] [Related]  

  • 18. Within-winter flexibility in muscle and heart lipid transport and catabolism in passerine birds.
    Swanson DL; King MO; Culver W; Zhang Y
    J Comp Physiol B; 2019 Aug; 189(3-4):451-462. PubMed ID: 31076837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glycolysis in the pectoralis muscles of seasonally acclimatized American goldfinches exposed to cold.
    Marsh RL; Dawson WR; Camilliere JJ; Olson JM
    Am J Physiol; 1990 Mar; 258(3 Pt 2):R711-7. PubMed ID: 2316716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic flexibility of skeletal muscle and heart masses and expression of myostatin and tolloid-like proteinases in migrating passerine birds.
    King MO; Zhang Y; Carter T; Johnson J; Harmon E; Swanson DL
    J Comp Physiol B; 2015 Apr; 185(3):333-42. PubMed ID: 25585945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.