These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Recent knowledge on bacterial protein toxins]. Takeda Y Tanpakushitsu Kakusan Koso; 1986 Mar; 31(4 Suppl):281-7. PubMed ID: 3520678 [No Abstract] [Full Text] [Related]
5. Structure-activity relationships in diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Collier RJ Cancer Treat Res; 1988; 37():25-35. PubMed ID: 2908628 [No Abstract] [Full Text] [Related]
6. Bacterial protein toxins with latent ADP-ribosyl transferases activities. Lai CY Adv Enzymol Relat Areas Mol Biol; 1986; 58():99-140. PubMed ID: 3012972 [No Abstract] [Full Text] [Related]
7. Mono (ADP-ribosyl)transferases and their effects on cellular metabolism. Vaughan M; Moss J Curr Top Cell Regul; 1981; 20():205-46. PubMed ID: 6276083 [No Abstract] [Full Text] [Related]
8. Computer modelling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Domenighini M; Montecucco C; Ripka WC; Rappuoli R Mol Microbiol; 1991 Jan; 5(1):23-31. PubMed ID: 1901617 [TBL] [Abstract][Full Text] [Related]
9. Gangliosides as receptors for bacterial enterotoxins. Fishman PH; Pacuszka T; Orlandi PA Adv Lipid Res; 1993; 25():165-87. PubMed ID: 8396312 [No Abstract] [Full Text] [Related]
10. Insights into membrane protein folding and translocation from the behavior of bacterial toxins: models for membrane translocation. London E; Ulbrandt ND; Tortorella D; Jiang JX; Abrams FS Soc Gen Physiol Ser; 1993; 48():45-61. PubMed ID: 8503054 [No Abstract] [Full Text] [Related]
11. Different sensitivity of Pseudomonas aeruginosa exotoxin A and diphtheria toxin to enzymes from polymorphonuclear leukocytes. Döring G; Müller E Microb Pathog; 1989 Apr; 6(4):287-95. PubMed ID: 2502701 [TBL] [Abstract][Full Text] [Related]
12. Role of membrane gangliosides in the binding and action of bacterial toxins. Fishman PH J Membr Biol; 1982; 69(2):85-97. PubMed ID: 6752418 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders. Griffiths SL; Finkelstein RA; Critchley DR Biochem J; 1986 Sep; 238(2):313-22. PubMed ID: 3541910 [TBL] [Abstract][Full Text] [Related]
14. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Domenighini M; Magagnoli C; Pizza M; Rappuoli R Mol Microbiol; 1994 Oct; 14(1):41-50. PubMed ID: 7830559 [TBL] [Abstract][Full Text] [Related]
15. Bacterial protein toxins acting on intracellular targets. Olsnes S; Kozlov JV; van Deurs B; Sandvig K Semin Cell Biol; 1991 Feb; 2(1):7-14. PubMed ID: 1954345 [TBL] [Abstract][Full Text] [Related]
16. Domain-specific bias in arginine/lysine usage by protein toxins. London E; Luongo CL Biochem Biophys Res Commun; 1989 Apr; 160(1):333-9. PubMed ID: 2496688 [TBL] [Abstract][Full Text] [Related]
17. Cholera toxin. van Heyningen S Biosci Rep; 1982 Mar; 2(3):135-46. PubMed ID: 6121589 [No Abstract] [Full Text] [Related]
18. Intracellular transport and processing of protein toxins produced by enteric bacteria. Sandvig K; Garred O; van Deurs B Adv Exp Med Biol; 1997; 412():225-32. PubMed ID: 9192018 [TBL] [Abstract][Full Text] [Related]
19. An overview of toxin-receptor interactions. Le Vine H; Cuatrecasas P Pharmacol Ther; 1981; 12(1):167-207. PubMed ID: 6789341 [No Abstract] [Full Text] [Related]
20. Modulation of enterotoxin binding and function in vitro and in vivo. Donta ST; Damiano-Burbach P; Poindexter NJ J Infect Dis; 1988 Mar; 157(3):557-64. PubMed ID: 2830346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]